West Bengal State Council of Technical & Vocational Education and Skill Development (Technical Education Division)

Syllabus of

Diploma in Chemical Engineering [CHE]

Part-III (5th Semester)

Revised 2022

CURRICULAR STRUCTURE FOR PART-III (SEMESTER 5) OF THE FULL-TIME DIPLOMA COURSES IN CHEMIICAL ENGINEERING

BRANCH: CHEMICALCAL ENGINEERING				SEMESTER 5						
SL No	Category	Code No	Course Title	L	Р	Total Class per week	Credit	Full marks	Internal Marks	ESE Marks
1	Program Core	CHEPC301	Mass Transfer - II	3	-	3	3	100	40	60
2	Program Core	CHEPC303	Chemical Reaction Engineering	3	-	3	3	100	40	60
3	Program Core	CHEPC305	Process Control	3	-	3	3	100	40	60
4	Program Core	CHPC307	Instrumentation	3	I	3	3	100	40	60
5	Program Elective	CHPE301	Plant Utilities/Ceramic Technology	3	-	3	3	100	40	60
6	Program Elective	CHPE303	Petroleum Refinery Engineering/Safety in Chemical Process Industries	3	-	3	3	100	40	60
7	Program Core	CHPC309	Mass Transfer Lab		3	3	1	100	60	40
8	Program Core	CHPC311	Chemical Reaction Engineering Lab	-	3	3	1	100	60	40
9	Major Project	PR301	Major Project	-	3	3	1	100	60	40
10	Internship	SI301	Internship - II	-	-	-	1	100	100	0
Total 18 9 27 22 1000 520 480										
	STUDENT CONTACT HOURS PER WEEK: 27 hours (Lecture-18 hours; Practical-9 hours) Theory and Practical Period of 60 minutes each. FULL MARKS-1000 (Internal Marks-520; ESE Marks-480) L-Lecture, P-Practical, ESE- End Semester Examination									

Credit Distribution	Credit
Program Core	14
Program Elective	6
Project	1
Internship 2	1
Total	22

Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester examination separately in each subject.

Program Elective (without Lab)	Credit	
1. Plant Utilities (Sub code: CHEPE301/1)	Any	2
2. Ceramic Technology (Sub code: CHEPE301/2)	one	3
3. Petroleum Refinery Engineering (Sub code: CHEPE303/1)	Any	3
4. Safety in Chemical Process Industries (Sub code: CHEPE303/2)		5

Name of the Course: Diploma in Chemical Engineering			
Category: Program Core	Semester: Fifth		
Code no.: CHEPC301	Theory: 100 Marks		
Course Title: Mass Transfer-II	Examination Scheme:		
	i) External Assessment: 60 Marks		
Duration: 17 weeks	(End Semester Examination)		
Total lecture class/week: 3	ii) Internal Assessment:40 Marks		
	[Class Test: 20 Marks		
Credit: 3	Assignment/Viva voce/Quizzes: 10 Marks		
	Class attendance: 10 Marks]		
Pass Criterion: Students have to obtain at least 40% marks (nass marks) in both internal assessment and end semester			

examination separately.

1. Course Objectives:

1.	This subject will provide the students the basic concept of mass transfer.
2.	It will impart knowledge to understand working of mass transfer equipment used in chemical process
	industries.
3.	This subject will provide adequate information about the unit operations involved in Humidification, Drying,
	Adsorption and Crystallisation.

2. Course Outcomes:

On comple	etion of the course, students will be able to:
	Describe the processes of humidification and dehumidification.
CO1	Define absolute humidity, Dry bulb and wet bulb temperature, relative humidity, percentage saturation,
	humid volume, humid heat and enthalpy of a gas-vapour mixture.
	Use Psychometric chart for calculation of above parameters for air-water vapor mixture.
	Explain function of cooling tower, spray chamber and spray pond.
	Describe the process of drying.
CO2	Define moisture content – equilibrium, bound, unbound and free moisture
	Explain their graphical representation.
	Explain the rate of drying curve for batch drying - initial adjustment, constant rate period and falling rate
	period.
	Calculate drying time for batch drying.
	Explain the function of direct heat and indirect heat dryers; such as tray dryer, rotary dryer and spray dryer.
	Describe some commercial adsorbents and their applications,
CO3	Explain the required characteristics and properties of adsorbents.
	Describe the process of adsorption and adsorption equillibria.
	Define percolation and elution.
	Explain fixed bed and continuous adsorbers.
	Calculate some basic calculation on adsorption.
	Define crystal geometry, crystal size and shape factor.
CO4	Describe the process of crystallization and nucleation
	Describe the rate of crystallization and its controlling technique,
	Explain the effect of temperature and impurities on crystal formation.
	Explain the function of vacuum, draft and growth type crystalliser.
	Calculate the yield of crystal.

3. Pre-Requisites:

1.	Knowledge of basic concept on physics, Chemistry and Mathematics.
2.	Idea about basic separation processes.

4. Theory Components:

TT	Description	Contort
Unit	Description	Contact
TT 1.4		nours
Unit I	Concept of absolute humidity, Dry and wet build temperature, relative	12
HUMIDIFICATION	numidity, percentage saturation, numid volume, numid neat and enthalpy of a	
	gas-vapour mixture.	
	Application of Psychometric chart.	
	Concept of humidification & dehumidification.	
	Basic idea about cooling tower, spray chamber & spray pond.	
	Simple numerical problems	
Unit 2	Concept of moisture content – equilibrium, bound, unbound and free moisture	12
DRYING	and their graphical representation.	
	Concept of drying, constant drying condition, rate of drying curve for batch	
	drying- initial adjustment, constant rate period, falling rate period, Calculation	
	of drying time for batch drying.	
	Simple numerical problems.	
	Concept of direct heat and indirect heat dryers.	
	Basic idea about tray dryer, rotary dryer and spray dryer.	
Unit 3	Commercial Adsorbents and their applications. Characteristics and properties	12
ADSORPTION	of adsorbents.	
	Concept of adsorption and adsorption equillibria. Concept of percolation and	
	elution.	
	Batch adsorption in a stirred vessel.	
	Basic idea about fixed bed and continuous adsorbers.	
	Simple numerical problems	
Unit 4	Crystal geometry, crystal size and shape factor.	9
CRYSTALLIZATION	Concept of crystallization and nucleation	-
	Rate of crystallization and its controlling technique	
	Effect of temperature and impurities on crystal formation	
	Basic concept about vacuum draft and growth type crystalliser	
	Simple numerical problems	
Sub Total: Total Lecture	e Classes	45
No. of classes required for conducting Internal Assessment examination		
Grand Total: 5		

5. Suggested Home Assignments/Students' Activities: The concerned teacher may collect assignments from the students on different units of Mass Transfer-II. He or She may also conduct Viva-Voce or Quizzes for the students based on the different units of the subject.

6. Suggested scheme for question paper design for conducting internal assessment examination: (Duration: 45minutes)

Questions to be set as per Bloom's Taxonomy					
	Distribution of Marks				
	Level 1 (Remember)	Level 2 (understand)	Level 3 (Apply & above)	Total	
Class Test - 1	4	8	(hppi) & above) 8	20	
Class Test - 2	4	8	8	20	

7. Suggested Scheme for End Semester Examination: [Duration 3 hours]

	Question Paper Type	Marks
1.	Objective type questions carrying 1 mark for 20 questions out of 25 questions throughout the syllabus.	1×20=20
2.	Questions carrying 2 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	2×5=10

8. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators		
	Exceeds expectation (5)	Meets expectation (3)	Does not meet expectations (1)
1.			
3. Problem setup	Problems are translated into proper mathematical forms which are ready to be solved.	Problems are translated into mathematical forms which are ready to be solved with minor errors	Unable to translate problem into proper mathematical forms
4. Mathematical modeling	Combines mathematics and/or scientific principles to formulate models of thermodynamics;	Chooses, rather than develops, a mathematical model and/or scientific principle that applies to thermodynamics	Does not understand the connection between a mathematical model and/or scientific principles applied to thermodynamics
5. Engineering problem solving	Executes calculation correctly by hand and/or using math/engineering software	Minor errors in calculations by hand or using math/engineering software	Calculations not performed or performed totally incorrectly by hand or does not know how to use math/engineering software

S1.	Book Title	Author	Publisher
No			
1	Principles of Mass Transfer and Separation	B. K. Dutta	Prentice Hall of India
	Processes		
2	Mass Transfer Operations	Treybal	Mc Graw-Hill Book Co. Ltd., New York
			and Kogakusha Co Ltd., Tokyo.
3	Unit Operations of Chemical Engineering	Mc Cabe and Smith	Mc Graw-Hill Book Co. Ltd., New York
			and Kogakusha Co. Ltd., Tokyo.
4	Introduction to Chemical engineering	Badger and Banchero	McGraw-Hill Book Co. Ltd., New York
			and Kogakusha Co. Ltd., Tokyo
5	Introduction to Chemical Engineering	Ghosal, Sanyal, Dutta	Tata Mc Grow-Hill Pub. Co. Ltd., New
			Delhi
6	Chemical Engineering, Vol.1, 2, 4 & 5	Coulson and	Pergamon Press, Oxford
		Richardson	

Name of the Course: Diploma in Chemical Engineering		
Category: Program Core	Semester: Fifth	
Code no.: CHEPC303	Theory: 100 Marks	
Course Title: Chemical Reaction Engineering	Examination Scheme: i) External Assessment: 60 Marks	
Duration: 17 weeks	(End Semester Examination)	
Total lecture class/week: 3	ii) Internal Assessment:40 Marks	
Credit: 3	Assignment/Viva voce/Quizzes: 10 Marks Class attendance : 10 Marks]	
Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester		

1. Course Objectives:

1.	To impart the knowledge of reaction mechanism and kinetics.
2.	Ideas on different type of industrial reactors.
3.	Process design of reactors of different types.

2. Course Outcomes:

On comple	On completion of the course, students are expected to:		
CO1	Classify chemical reactions, factors affecting the rate of reaction, and the effect of temperature on rate of reaction.		
CO2	Analyze the experimental data for determining the order of reaction and reaction rate constant.		
CO3	Ability to relate rate of reaction with design equation for reactor sizing.		
CO4	Illustrate with the comparisons of ideal reactor types (batch, plug flow, mixed flow).		
CO5	Explain the fundamental concept of Catalyst and catalytic reactor.		

3. Pre-Requisites:

1.	Knowledge of basic concept on physics, Chemistry and Mathematics.
2.	Knowledge on basic chemical reaction and catalyst.

4. Theory Components:

Unit	Description	
		nouis
Unit I: KINETICS OF HOMOGENOUS REACTIONS	Introduction. Basic idea on Single and Multiple Reactions, Homogeneous and heterogeneous reactions, Elementary and Non-elementary Reactions. Concept of the Rate Equation. Molecularity and Order of Reaction. Heat of reaction- Endothermic reaction and Exothermic reaction. Temperature-dependent term of a rate equation-Temperature Dependency from Arrhenius' Law, collision theory, transition state theory. Concept of equilibrium constant- Van't Hoff Equation.	12
Unit II: INTERPRETATIONS OF BATCH REACTOR DATA	Idea on Batch Reactor including performance equation. Varying-Volume Batch Reactor and its performance equation. Integral Method of Analysis of Batch Reactor Data and related problems. Irreversible Unimolecular-Type First-Order Reactions. Irreversible Bimolecular-Type Second-Order Reactions. Zero-Order Reactions. Overall Order of Irreversible Reactions from the Half-Life. Irreversible Reactions in Series and parallel. First-Order Reversible Reactions.	12
Unit III: CONTINUOUS REACTORS	Concept on continuous stirred-tank reactor (CSTR) and plug flow reactor (PFR). Space-Time or Residence Time. Performance equation for steady-state CSTR and steady-state Plug Flow Reactor (PFR) and related problems.	12
Unit IV: CATALYSTS AND CATALYTIC REACTIONS	Catalysis. Homogeneous and heterogeneous Catalysis. Basic concept on Autocatalytic Reactions. Theory on heterogeneous catalytic reaction. Importance of adsorption in solid catalysis. Rate of a catalytic reaction and related problems. Performance equations for reactors containing porous catalyst particles. Concept on Thiele modulus, catalyst effectiveness factor. Differential Reactor and Integral Reactor. Concept on Mixed Flow Catalytic Reactor. Basic concept on Trickle Bed Reactor and Fluidized Bed Reactor (only description).	9

Sub Total: Total Lecture Classes	45
No. of classes required for conducting Internal Assessment examination	06
Grand Total:	51

5. Suggested Home Assignments/Students' Activities: The concerned teacher may collect assignments from the students on different units of Chemical Reaction Engineering. He or She may also conduct Viva-Voce or Quizzes for the students based on the different units of the subject.

6. Suggested scheme for question paper design for conducting internal assessment examination: (Duration: 45minutes)

Questions to be set as per Bloom's Taxonomy				
	Distribution of Marks			
	Level 1 (Remember)	Level 2 (understand)	Level 3	Total
			(Apply & above)	Total
Class Test - 1	4	8	8	20
Class Test - 2	4	8	8	20

7. Suggested Scheme for End Semester Examination: [Duration 3 hours]

	Question Paper Type	Marks
1.	Objective type questions carrying 1 mark for 20 questions out of 25 questions throughout the syllabus.	1×20=20
2.	Questions carrying 2 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	2×5=10
3.	Questions carrying 6 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	6×5=30

8. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators		
	Exceeds expectation (5)	Meets expectation (3)	Does not meet expectations (1)
1.			
3. Problem setup	Problems are translated into proper mathematical forms which are ready to be solved.	Problems are translated into mathematical forms which are ready to be solved with minor errors	Unable to translate problem into proper mathematical forms
4. Mathematical modeling	Combines mathematics and/or scientific principles to formulate models of thermodynamics;	Chooses, rather than develops, a mathematical model and/or scientific principle that applies to thermodynamics	Does not understand the connection between a mathematical model and/or scientific principles applied to thermodynamics
5. Engineering problem solving	Executes calculation correctly by hand and/or using math/engineering software	Minor errors in calculations by hand or using math/engineering software	Calculations not performed or performed totally incorrectly by hand or does not know how to use math/engineering software

Sl. No.	Title of Book	Name of Authors	Publisher
1.	Chemical Reaction Engineering	Octave Levenspiel	Wiley Easter Ltd., New York.

2.	A Text book of Chemical Reaction Engineering	S C Roy and C Guha	Dhanpat Rai & Co. (P) Ltd.
3.	Elements of Chemical Reaction Engineering	H. Scott Fogler	Prentice Hall International Series

Name of the Course: Diploma in Chemical Engineering		
Category: Program Core	Semester: Fifth	
Code no.: CHEPC305	Theory: 100 Marks	
Course Title: Process control	Examination Scheme: i) External Assessment: 60 Marks (End Semester Examination)	
Duration: 17 weeks	ii) Internal Assessment:40 Marks	
Total lecture class/week: 3	[Class Test: 20 Marks Assignment/Viva voce/Quizzes: 10 Marks	
Credit: 3	Class attendance: 10 Marks]	

Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester examination separately.

1. Course Objectives:

1.	To study the transfer function of first order and second order system along with mathematical modeling.
2.	To understand the concept of stability of a control system

2. Course Outcomes:

On completion of the course, students are expected to:		
CO1	Calculate the Laplace transform and the inverse Laplace transform	
CO2	Formulate the mathematical model of a system	
	Calculate steady state gain and steady state error of a system	
CO3	Calculate the time required for ultimate response for first order system	
	Calculation of transportation Lag of a system	
CO4	Determine the stability of a system	

3. Pre-Requisites:

1	Knowledge of basic concepts of sciences such as physics.
2	Basic Knowledge of differential and integral Calculus.
3	Fundamentals of Fluid Mechanics

4. Theory Components:

Content	Description	Hrs./Unit
Unit: 1:	Introduction & Definition of Laplace Transform, Existence of	12
Laplace transforms & Inverse	Laplace Transform, Linear property of Laplace	
Laplace Transforms:	Transformation, Shifting Property of Laplace Transformation,	
	Change of Scale Property, Laplace transform on derivative,	
	Laplace transform on Integrals, multiplication by t ⁿ , Division	
	by t, Laplace transformation of Periodic Function, Laplace	
	Transformation on Unit Step Function	
	Inverse Laplace Transforms: Definition, Lerch's Theorem,	

	Linear Property of Inverse Laplace Transform, shifting property of Inverse Laplace Transform, change of scale, Property of Inverse Laplace Transform, Inverse Laplace transform on derivatives, multiplication by S ⁿ , Division by S, Inverse Laplace Transform of Integrals, Convolution Property of Inverse Laplace Transform, Method of Partial Fraction to find Laplace Inverse Transform	
Unit 2: Introductory concepts:	Importance of Process Control, Mathematical Modelling of a system, Initial Value Theorem, Final Value Theorem Dynamic behaviour of systems – First order system, derivation of transfer functions for first order system, Poles and Zeros of a Transfer Function, Qualitative Analysis of the response of a system Transient response of first order system, forcing functions, Step response, Impulse Response, Ramp Response, Sinusoidal Response.	10
Unit 3: Examples of first order system	liquid level, temperature, pressure, flow and concentration control processes, linearization of nonlinear systems, interacting and non-interacting systems.	8
Unit 4: Higher order system:	second order systems, natural frequency, damping factor, overshoot, decay ratio, rise time and settling time, Transportation Lag. (Only definition and simple formula-based problems)	6
Unit 5: Concept of Feedback Control & Stability	Types Feedback controllers, Block Diagram and The Closed loop Response, Effect of Proportional Control on the Response of a Controlled Process, Effect of P, I, D, PI, PD, PID control actions Definition of stability of control systems, Stability Criterion, Routh Test for Stability.	10
Sub Total: Total Lecture Classes		
No. of classes required for conducting Internal Assessment examination		
Grand Total:		51

5. Suggested Home Assignments/Students' Activities: The concerned teacher may collect assignments from the students on different units of Process control. He or She may also conduct Viva-Voce or Quizzes for the students based on the different units of the subject.

6. Suggested scheme for question paper design for conducting internal assessment examination: (Duration: 45minutes)

Questions to be set as per Bloom's Taxonomy				
	Distribution of Marks			
	Level 1 (Remember)	Level 2 (understand)	Level 3 (Apply & above)	Total
Class Test - 1	4	8	8	20
Class Test - 2	4	8	8	20

7. Suggested Scheme for End Semester Examination: [Duration 3 hours]

	Question Paper Type	Marks
1.	Objective type questions carrying 1 mark for 20 questions out of 25 questions throughout the syllabus.	1×20=20
2.	Questions carrying 2 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	2×5=10
3.	Questions carrying 6 marks for 5 questions (Subjective type) out of 8 questions (at least one question	6×5=30

8. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators			
	Exceeds expectation (5)	Meets expectation (3)	Does not meet expectations (1)	
1.				
3. Problem setup	Problems are translated into proper mathematical forms which are ready to be solved.	Problems are translated into mathematical forms which are ready to be solved with minor errors	Unable to translate problem into proper mathematical forms	
4. Mathematical modeling	Combines mathematics and/or scientific principles to formulate models of thermodynamics;	Chooses, rather than develops, a mathematical model and/or scientific principle that applies to thermodynamics	Does not understand the connection between a mathematical model and/or scientific principles applied to thermodynamics	
5. Engineering problem solving	Executes calculation correctly by hand and/or using math/engineering software	Minor errors in calculations by hand or using math/engineering software	Calculations not performed or performed totally incorrectly by hand or does not know how to use math/engineering software	

5. Suggested Learning Resources:

Sl. No.	Title of Book	Name of Authors	Publisher
1	Process System Analysis and Control	Coughanowr	McGraw-Hill co. New Delhi
2	Chemical Process Control- An Introduction to theory and Practice	Stephanopoulos	Prentice Hall of India Pvt.Ltd., New Delhi
3	Automatic Process Control	Eckman	Wiley Eastern Pvt. Ltd., NewDelhi
4	Principles of Process Control	Patranobis	Tata McGraw-Hill Pub. Co.Ltd., New Delhi

Name of the Course: Diploma in Chemical Engineering		
Category: Program Core	Semester: Fifth	
Code no.: CHEPC307	Theory: 100 Marks	
Course Title: Instrumentation	Examination Scheme:	
Duration: 17 weeks	(End Semester Examination)	
Total lecture class/week: 3	ii) Internal Assessment:40 Marks	
Credit: 3	Assignment/Viva voce/Quizzes: 10 Marks Class attendance: 10 Marks	
Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester		

examination separately.

1. Course Objectives:

1.	To study the transfer function of first order and second order system along with mathematical
	modelling.
2.	To understand the concept of stability of a control system

2. Course Outcomes:

On compl	On completion of the course, students are expected to:		
CO1	Explain various elements of an instrument and their functions. Describe the basic characteristics of Instruments.		
CO2	Explain the working principles of pressure measuring devices such as Manometers, Bourdon gauge, Mc Leod gauge, Pirani gauge and ionization gauge, strain gauge, Linear Variable Differential Transformer.		
CO3	Describe the working principles of important temperature measuring devices such as bimetallic thermometer, liquid in glass and liquid in metal thermometer, gas thermometers, vapour pressure thermometer, Resistance thermometer, thermocouples, Thermistor, Radiation and optical pyrometer.		
CO4	Explain the working principles of important flow measuring devices such as orifice meter, Venturi meter, Pitot tube, rotameter, notches and weirs, turbine flow meter, Target flowmeter, electromagnetic flowmeter, heat transfer flowmeter, hot wire anemometer, Doppler flowmeter Nutating disc meter, rotating vane meter and Lobed impeller meter.		
CO5	function of important instruments such as Chemical composition analyzer, oxygen analyzer, moisture eter, refractometer, polarimeter, thermal conductivity meter, hydrometer which are used in different		

3. Pre-Requisites:

1	Knowledge of basic concepts of sciences such as physics.
2	Basic Knowledge of differential and integral Calculus.

4. Theory Components:

Content	Description	Hrs./Unit
Unit 1 Introduction	Importance of instruments in different chemical process industries. Functional Elements of instruments and their Performance characteristics.	5
Unit 2 Pressure measurement	Manometers–U tube, well tube, enlarged leg, inclined tube, inverted U tube. Elastic type–Bourdon gauge, diaphragm element, bellows element and bell gauge. Vacuum type–Mc Leod gauge, Pirani gauge and ionization gauge. Electrical type– resistive- strain gauge and potentiometric, inductive- Linear Variable Differential Transformer, and capacitive.	9
Unit 3 Temperature measurement	 Expansion Thermometers-Solid expansion type – bimetallic thermometer, Liquid expansion type – liquid in glass and liquid in metal thermometer, gas expansion type- gas thermometers. Filled system thermometers – Liquid filled thermometers, vapour pressure thermometer. Electrical type – Resistance thermometer, thermocouples, Thermistor, Radiation and optical pyrometer. 	9
Unit 4 Flow measurement	Orifice meter, Venturi meter, Pitot tube, rotameter, notches and weirs – rectangular, vee and trapezoidal notches. Electrical type – turbine flow meter and Target flowmeter, electromagnetic flowmeter, Thermal flowmeters- heat transfer flowmeter and hot wire anemometer, Ultrasonic flow meter - time difference type and Doppler flowmeter. Mass flow meter – positive displacement type- Nutating disc meter, rotating vane meter, Lobed impeller meter.	9
Unit 5 Liquid level measurement	Direct methods- Hook type level indicator, sight glass, Float type and displacer type level indicator. Indirect methods- Hydrostatic pressure type and Electrical methods. Hydrostatic pressure type – Pressure gauge method, Air bellows and Air purge system. Electrical methods – Capacitance level indicator and radiation level detector.	8
Unit 6 Other instruments	Chemical composition analyzer, oxygen analyzer, moisture meter, pH meter, refractometer, polarimeter, thermal conductivity meter, hydrometer.	5
Sub Total: Total L	ecture Classes	45

No. of classes required for conducting Internal Assessment examination	06
Grand Total:	51

5. Suggested Home Assignments/Students' Activities: The concerned teacher may collect assignments from the students on different units of Instrumentation. He or She may also conduct Viva-Voce or Quizzes for the students based on the different units of the subject.

6. Suggested scheme for question paper design for conducting internal assessment examination: (Duration: 45minutes)

Questions to be set as per Bloom's Taxonomy				
	Distribution of Marks			
	Level 1 (Remember)	Level 2 (understand)	Level 3 (Apply & above)	Total
Class Test - 1	4	8	8	20
Class Test - 2	4	8	8	20

7. Suggested Scheme for End Semester Examination: [Duration 3 hours]

	Question Paper Type	Marks
1.	Objective type questions carrying 1 mark for 20 questions out of 25 questions throughout the syllabus.	1×20=20
2.	Questions carrying 2 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	2×5=10
3.	Questions carrying 6 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	6×5=30

8. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators		
	Exceeds expectation (5)	Meets expectation (3)	Does not meet expectations (1)
1.			
3. Problem setup	Problems are translated into proper mathematical forms which are ready to be solved.	Problems are translated into mathematical forms which are ready to be solved with minor errors	Unable to translate problem into proper mathematical forms
4. Mathematical modeling	Combines mathematics and/or scientific principles to formulate models of thermodynamics;	Chooses, rather than develops, a mathematical model and/or scientific principle that applies to thermodynamics	Does not understand the connection between a mathematical model and/or scientific principles applied to thermodynamics
5. Engineering problem solving	Executes calculation correctly by hand and/or using math/engineering software	Minor errors in calculations by hand or using math/engineering software	Calculations not performed or performed totally incorrectly by hand or does not know how to use math/engineering software

Sl. No	Book Title	Author	Publisher
1	Industrial Instrumentation and	S. K. Singh	Tata Mc Graw Hill Pub. Co. Ltd., New
	Control		Delhi
2	Principles of Industrial	D. Patranobis	Tata Mc Graw Hill Pub. Co. Ltd., New
	Instrumentation		Delhi
3	Measurement Systems-	Doeblin	Mc Graw-Hill Kogakusha, Ltd., New
	Application & Design		Delhi
4	Industrial Instrumentation	Eckman	Wiley Eastern Pvt. Ltd., New Delhi

Name of the Course: Diploma in Chemical Engineering		
Category: Program Elective	Semester: Fifth	
Code no.: CHEPE301/1	Theory: 100 Marks	
Course Title: Plant utilities	Examination Scheme: i) External Assessment: 60 Marks	
Duration: 17 weeks	(End Semester Examination)	
Total lecture class/week: 3	ii) Internal Assessment: 40 Marks	
Credit: 3	Assignment/Viva voce/Quizzes: 10 Marks Class attendance: 10 Marks]	
Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester examination separately.		

1. Course Objectives:

1.	To understand different processes and their utilities in relevant industry.
2.	To understand waste and disposal methods

2. Course Outcomes:

On compl	On completion of the course, students are expected to:		
CO1	Explain relevant parameters required for water treatment in corresponding equipment.		
	Perform Energy balance around boilers and application of steam table		
CO2			
	Perform energy balance around refrigerators and choose suitable refrigerant		
CO3			
	Describe scaling up and choosing suitable techniques for waste disposal		
CO4			

3. Pre-Requisites:

1.	Knowledge of basic concepts of sciences such as physics.
2.	Basic Knowledge of differential and integral Calculus.
3	Fundamentals of Fluid Mechanics, heat transfer and mass transfer.

4. Theory Components:

Content	Description	Hrs./Unit
Unit 1: IMPORTANCE OF UTILITIES	Hard and Soft water, Requisites of Industrial Water and its uses. Methods of water Treatment such as Chemical Softening and Demineralization, Resins used for Water Softening and Reverse Osmosis. Effects of impure Boiler Feed Water.	12
Unit 2: STEAM AND STEAM GENERATION	Properties of Steam, problems based on Steam, Types of Steam Generator such as Solid Fuel Fired Boiler, Waste Gas Fired Boiler and Fluidized Bed Boiler. Scaling and Trouble Shooting. Steam Traps and Accessories.	10

Unit 3:	Refrigeration Cycles, Methods of Refrigeration used in	8
REFRIGERATION	Industry and Different Types of Refrigerants such as	
	Monochloro-difluro Methane, Chlorofluro Carbons and Brins.	
	Refrigerating	
	Effects and Liquefaction Processes.	
Unit 4:	Classification of Compressor, Reciprocating Compressor,	6
COMPRESSED AIR	Single Stage and Two Stage Compressor, Velocity Diagram for	
	Centrifugal Compressor, Slip Factor, Impeller Blade Shape.	
	Properties of Air – Water Vapours and use of Humidity Chart.	
	Equipments used for Humidification, Dehumidification and	
	Cooling Towers.	
Unit 5:	Types of Fuel used in Chemical Process Industries for Power	9
FUEL AND WASTE	Generation such as Natural Gas, Liquid Petroleum Fuels, Coal	
DISPOSAL	and Coke. Internal Combustion Engine, Petrol and Diesel	
	Engine. Waste Disposal.	
Sub Total: Total Lecture Classes		45
No. of classes required for condu	cting Internal Assessment examination	06
		06
Grand Total:		51

5. Suggested Home Assignments/Students' Activities: The concerned teacher may collect assignments from the students on different units of Plant utilities. He or She may also conduct Viva-Voce or Quizzes for the students based on the different units of the subject.

6. Suggested scheme for question paper design for conducting internal assessment examination: (Duration: 45minutes)

Questions to be set as per Bloom's Taxonomy					
	Distribution of Marks				
	Level 1 (Remember)Level 2 (understand)Level 3 (Apply & above)Total				
Class Test - 1	4	8	8	20	
Class Test - 2	4	8	8	20	

7. Suggested Scheme for End Semester Examination: [Duration 3 hours]

	Question Paper Type	Marks
1.	Objective type questions carrying 1 mark for 20 questions out of 25 questions throughout the syllabus.	1×20=20
2.	Questions carrying 2 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	2×5=10
3.	Questions carrying 6 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	6×5=30

8. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators			
	Exceeds expectation (5)	Meets expectation (3)	Does not meet expectations (1)	
1.				
3. Problem	Problems are translated into	Problems are translated into	Unable to translate problem into	
setup	proper mathematical forms	mathematical forms which are	proper mathematical forms	
	which are ready to be	ready to be solved with minor		
	solved.	errors		
4. Mathematical	Combines mathematics and/or	Chooses, rather than develops,	Does not understand the	
modeling	scientific principles to formulate	a mathematical model and/or	connection between a	
	models of thermodynamics;	scientific principle that applies	mathematical model and/or	
		to thermodynamics	scientific principles applied	

			to thermodynamics
5. Engineering	Executes calculation correctly	Minor errors in calculations	Calculations not performed or
problem solving	by hand and/or using	by hand or using	performed totally incorrectly by
	math/engineering software	math/engineering software	hand or does not know how to
	-		use math/engineering software

9. Suggested Learning Resources:

Text and reference books:				
Sl. No.	Title of the Book	Name of Authors	Publisher	
1.	Thermal Engineering	P. L. Ballaney	Khanna Publisher New Delhi.	
2.	Plant utilities	D B DHONE	Nirali Prakashan.	
3.	Basic Refrigeration & Air- Conditioning	P. N. Ananthanarayan,	Tata McGraw Hill, New Delhi.	
4.	Refrigeration & Air- Conditioning,	Sadhu Singh,	Khanna Publishing House. New Delhi	

Name of the Course: Diploma in Chemical Engineering			
Category: Program Elective	Semester: Fifth		
Code no.: CHEPE301/2	Theory: 100 Marks		
Course Title: Ceramic Technology Examination Scheme:			
Duration: 17 weeks	i) External Assessment: 60 Marks		
(End Semester Examination)			
Total lecture class/week: 3			
ii) Internal Assessment: 40 Marks			
Credit: 3	[Class Test: 20 Marks		
	Assignment/Viva voce/Quizzes: 10 Marks		
	Class attendance: 10 Marks]		
Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester			

examination separately.

1. Course Objectives:

1.	This subject will provide the knowledge of Ceramic industry
2.	This subject will give the idea about the raw materials and products of Ceramic industry.
3	It will help a student to deal with the of Fabrication methods of ceramic products.
4	It will impart knowledge on the analysis of chemical process from engineering & technical
	viewpoints.
	viewpoints.

2. Course Outcomes:

On comp	On completion of the course, the students will be able to		
CO 1	Classify ceramic materials and point out application areas		
CO 2	Identify equipments required in operation along with relevant parameters		
CO 3	Explain methods for fabrication of ceramic materials.		
CO 4	Choose proper refractories for appropriate operations		
CO 5	Describe glass fabrication process and Porcelain production		

4. Theory Components:

TT •.		a
Unit	Description	Contact
	Concert of coronic meterials	
Unit1: Introduction to	Classification of ceramic materials	4
Introduction to	Composition properties & application of ceramic Materials	
Ceramics	composition, properties & application of certaine materials.	
Unit2:	Definition of Beneficiation, Objective of Beneficiation	6
Beneficiation	The operations involved in the beneficiation step of ceramic materials	
Process	Comminution techniques followed in ceramic industry.	
	Names of Equipment used in Comminution	
	Working principle of some comminution equipments: Jaw crusher, Cone	
	crusher, Gyratory crusher, Ball mill, Attrition mill (Details not necessary)	
Unit3:	Basic steps involved in fabrication of ceramic objects	12
Fabrication and	Forming processes : Concept of Dry pressing, Cold isostatic pressing,	
Forming of	Plastic forming: Concept of Extrusion, Jiggering,	
Ceramics	Casting process: Slip casting,	
	Drying process: Factors affecting in drying, Mechanism of Spray Drying,	
	(Details not necessary)	
	Concept of Firing techniques, Sintering, Vitrification and Cooling.	
	Concept of Glazing and ceramic glaze defects.	
Unit4 [.]	Definition of Refractories. Classification of Refractories. Raw materials of	8
Introduction to	refractory materials. Properties of refractory materials. General method of	0
Refractories	manufacture of refractory. Applications of some following refractories: Acid	
	(Silica) Refractories, Basic Refractories, Insulating refractories, Special	
	refractories, Neutral refractories. Selection of refractories.	
Unit 5 :	Concept of cement. Types of Cement. Properties of cement, Raw materials of	7
Introduction to	Cement and manufacturing processes of Portland cement. Reactions occurred in	
Cement Technology	different zones of Rotary Kiln for manufacturing of Portland Cement, Working	
	principles of Rotary kiln, Refractory used in Rotary Kiln.	
Unit 6:	Definition of Glass, Types of Glass, Elementary properties of Glass (Details not	8
Glass & Porcelain	necessary). Concept of vitrification of glass. Glass processing: Raw materials.	0
Industry	Melting of raw materials, Forming Processes: Blowing, Moulding, Shaping,	
maastry	Refining of Glass (Testing of properties are not necessary).	
	Definition of Whitewares.	
	Raw materials, Composition and Classification of Whiteware.	
	Porcelain production process: Raw materials, Clay beneficiation step, Porcelain	
	processing technology.	
Sub Total: Total Lecture Classes		
No. of classes required	l for conducting Internal Assessment examination	06
Grand Total:		51

5. Suggested Home Assignments/Students' Activities: The concerned teacher may collect assignments from the students on different units of Ceramic Technology. He or She may also conduct Viva-Voce or Quizzes for the students based on the different units of the subject.

6. Suggested scheme for question paper design for conducting internal assessment examination: (Duration: 45minutes)

Questions to be set as per Bloom's Taxonomy				
	Distribution of Marks			
	Level 1 (Remember)	Level 2 (understand)	Level 3	Total
			(Apply & above)	Total
Class Test - 1	4	8	8	20
Class Test - 2	4	8	8	20

7. Suggested Scheme for End Semester Examination: [Duration 3 hours]

	Question Paper Type	Marks
1.	Objective type questions carrying 1 mark for 20 questions out of 25 questions throughout the syllabus.	1×20=20
2.	Questions carrying 2 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	2×5=10
3.	Questions carrying 6 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	6×5=30

8. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators
1	Originality of completing the assigned task
2	Accomplishing assigned problem
3	Presentation Skill
4	In Time submission of Assignment report / micro-project task
5	Viva-voce or Quizzes

9. Suggested Learning Resources:

	Book Title	Author	Publisher
Sl. No			
1	Elements of Ceramics	F.H Norton	Longman Higher Education
2	Introduction to Ceramics	W.D. Kingery	Wiley India Pvt. Ltd
3	Industrial Ceramics	Singer & Singer	Chapman and Hall
4	The Technology of Ceramics and	P.P Budnikov	MIT Press
	Refractories		
5	Cement Chemistry	F.W.H. Taylor	Thomas Telford Ltd

Name of the Course: Diploma in Chemical Engineering			
Category: Programme Elective	Semester : Fifth		
Code no. : CHEPE303/1	Theory : 100 Marks		
Course Title : Petroleum Refinery Engineering	Examination Scheme: i) External Assessment: 60 Marks		
Duration : 17 weeks	(End Semester Examination)		
Total lecture class/week : 3	ii) Internal Assessment: 40 Marks		
Credit : 3	 [Class Test: 20 Marks Assignment/Viva voce/Quizzes: 10 Marks Class attendance : 10 Marks] 		

Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester examination separately.

1. Course Outcomes: On completion of the course , students will be able to :

Sl No	Course Outcomes
i)	Explain origin and composition of petroleum
ii)	Describe distillation processes of crude petroleum.
iii)	Explain different purification processes of petroleum product with necessary flowchart

iv)	Discuss the important properties of petroleum products
v)	Describe different cracking and reforming processes in petroleum industry with necessary flowchart

2. Theory Components:

Unit	Topics & Sub-topics	Teaching Hours
Unit 1 : INTRODUCTION	Origin of Petroleum. Composition of Petroleum Classification of Petroleum Nature of Indian Crude. Name of some important Petroleum Products and their uses.	3
Unit: 2: PROCESSING OF CRUDE OIL	Concept of pre-treatment of crude oil: Electrical Dehydration of crude oil, Desalting of Crude oil, Stabilization of crude oil, Heating of Crude oil Working principle of Pipe Still Heater. Description of Single Stage, Two Stage & Three Stage distillation Unit with diagram. Atmospheric & Vacuum distillation unit with diagram.	6
Unit 3: PURIFICATION OF PETROLEUM PRODUCTS.	Objective of purification of petroleum products Sweetening process : Description of Doctor' Sweetening Process, Copper Chloride Sweetening process, Solutizer Process, Catalytic Desulphurisation process, Hydrofining Desulphurisation process. Dewaxing process: Description of Chilling & Pressing process, Solvent Dewaxing (MEK & Propane) process, Urea dewaxing process. Deoiling of wax : Sweating , Settling and Solvent deoiling process Acid, Alkali & Clay treatment of Petroleum products. Concept of Deasphalting Description of Propane deasphalting process. Description of Dearomatisation of Kerosene (Edeleanu Process) Concept of some other Solvent Extraction Process; Furfural Extraction, Phenol Extraction, Duo- Sol Extraction, Udex (Glycol) Extraction Process.	12
Unit 4: PROPERTIES OF PETROLEUM PRODUCTS	Concept of some important properties of petroleum products: Specific Gravity, Molecular Weight, Vapour Pressure, Kinematic viscosity (by Red Wood Viscometer), Viscosity Index, Flash Point (by Pensky Martin's apparatus), Fire Point, Cloud Point, Pour Point, Freezing Point, Smoke Point, Char Value, Carbon Residue, Aniline Point, Diesel Index, Octane Number, Cetane Number, Performance Number, Emulsification, Oxidation Stability, Distillation Range, Sulphur Content, Moisture Content (Dean & Stark apparatus), Sediment, Calorific Value and Ash in Petroleum Products.	10
Unit 5: CRACKING	Concept of Cracking Types of Cracking Influence of Various parameters in Cracking. Thermal Cracking Processes: Description of Pyrolysis, Visbreaking and Delayed coking). Catalytic Cracking Processes : Feed for catalytic cracking, Catalysts used in catalytic cracking, Catalytic cracking reaction, Description of Thermofer Catalytic Cracking (TCC) Moving Bed Process, Single Stage Fluidised Bed Catalytic Cracking (FCC) process, Hydrocracking.	7
Unit 6: REFORMING :	Concept of Reforming. Feed for Reforming, Reforming Reactions Types of Reforming. Thermal reforming. Catalytic reforming: Reactions involved, Effect of Variables in Catalytic Reforming. Description of commercial catalytic Reforming processes: Non–Regenerative Fixed Bed Platforming process, Regenerative fixed Bed Hydroforming process, Thermofer Catalytic Reforming (TCR) Moving Bed process, Fluidised Bed Hydroforming process.	7
	Sub Total : Total Lecture Classes	45

No. of classes required for conducting Internal Assessment examination	06
Grand Total :	51

3. Suggested Home Assignments/Students' Activities: The concerned teacher may collect assignments from the students on different units of Petroleum Refinery Engineering. He or She may also conduct Viva-Voce or Quizzes for the students based on the different units of Petroleum Refinery Engineering.

4. **Suggested scheme for question paper design for conducting internal assessment examination :**(Duration: 45 minutes)

Questions to be set as per Bloom's Taxonomy				
	Distribution of Theory Marks			
	Level 1	Level 2	Level 3	Total
	(Remember)	(understand)	(Apply & above)	Totai
Class Test - 1	4	8	8	20
Class Test - 2	4	8	8	20

5. Suggested Scheme for End Semester Examination: [Duration 3 hours]

Question Type	Marks
Objective type questions carrying 1 mark for 20 questions (QSs) out of 25 Qs throughout the syllabus.	1 X 20 = 20
Questions carrying 2 marks for 5 Qs out of 8 Qs (at least 1 Q from each unit)	2 X5 =10
Q s carrying 6 marks for 5 Qs (Subjective type) out of 8Qs (at least 1 Q from each unit)	6 X 5 = 30
	Total = 60

6. Rubrics for the Assessment of Students Activity: (20 marks)

SI No.	Performance Indicators
1	Sketch Flow sheet for different processing of Petroleum
2	Accomplishing assigned problem
3	Presentation Skill
4	In Time submission of Assignment report / micro-project task
5	Viva-voce or Quizzes

Sl No	Title of the Book	Author	Publication
1.	Modern Petroleum Refining Processes	Rao	Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi
2.	Petroleum Refinery Engineering,	Nelson	McGraw-Hill Book Co., Inc., New York and Kogakusha Co. Ltd., Tokyo.

3.	Elements of fuels, furnaces and refractories.	Gupta	Khanna Publishers, Delhi
4.	Petroleum Processing	Hengstebeck	McGraw-Hill Pub. Co. Ltd., New York
5	Indian Petroleum Handbook, Petroleum Information Service	Petroleum Information Service	11,Parliament Street, New Delhi
6	Outlines of Chemical Technology	Dryden	Affiliated East-West Press Pvt. Ltd., New Delhi
7	Introduction to Chemical Engineering	Ghosal ,Sanyal & Dutta	Tata McGraw-Hill Pub. Co. Ltd., New Delhi
8	Petroleum Refining Technology	Dr. Ram Prasad	Khanna
9	Petroleum Refining and Petrochemicals	N.K. Sinha	Umesh Publications

Name of the Course: Diploma in Chemical Engineering		
Category: Program Elective	Semester: Fifth	
Code no.: CHEPE 303/2	Theory: 100 Marks	
Course Title: Safety in Chemical Process Industries	Examination Scheme: i) External Assessment: 60 Marks	
Duration: 17 weeks	(End Semester Examination)	
Total lecture class/week: 3	ii) Internal Assessment: 40 Marks [Class Test: 20 Marks	
Credit: 3	Assignment/Viva voce/Quizzes: 10 Marks Class attendance: 10 Marks]	
Pass Criterion: Students have to obtain at least 40% marks examination separately.	(pass marks) in both internal assessment and end semester	

1. Course Objectives:

1.	This subject will provide the knowledge of safety issues in industry
2.	This subject will give the idea about the hazard identifications in industry.
3	It will help a student to deal with risk analysis in industry.
4	It will impart knowledge of safety protocols and waste disposal.

2. Course Outcomes:

On comp	On completion of the course, the students will be able to	
CO 1	Identify safety issues	
CO 2	Perform risk analysis and assessment	
CO 3	Perform hazard identification	
CO 4	Design safe waste disposal methodology	
CO 5	Design safe operation protocols	

4. Theory Components:

Unit	Description	Contact hours
Unit 1:	Hazard identification methodologies, risk assessment	6
	methods - PHA, HAZOP, MCA, ETA,	
	FTA, consequence analysis,	
Unit 2:	Hazards in work places - nature and type of work	8
	places, types of hazards, hazards due to	
	improper house-keeping, hazards due to fire in multi-	
	floor industries and buildings, guidelines and	
	safe methods in the above situations.	
Unit 3:	Workers' exposures to hazardous chemicals, TLVs of	12
	chemicals, physical and chemical	
	properties of chemicals leading to accidents like fire	
	explosions, ingestion and inhalation, pollution	
	in work places due to dangerous dusts, fumes and	
	vapours, guidelines and safe methods in chemicals	
	handling, storage and entry into confined spaces.	
Unit 4:	Hazards peculiar to industries like fertilizer, heavy	12
	chemicals, petroleum, pulp and paper,	
	tanneries, dyes, paints, pesticides, glass and ceramics,	
	dairy and sugar industries, guidelines for safeguarding	
	personnel and safeguarding against water, land and air	
	pollution in the above industries.	
Unit 5:	Safety education and training - safety management,	7
	fundamentals of safety tenets, measuring	
	safety performance, motivating safety performance,	
	legal aspects of industrial safety, safety audit.	
Sub Total : Total Lectur	re Classes	45
No. of classes required	06	
Grand Total :		51

5. Suggested Home Assignments/Students' Activities: The concerned teacher may collect assignments from the students on different units of Safety in Chemical Process Industries. He or She may also conduct Viva-Voce or Quizzes for the students based on the different units of the subject.

6. Suggested scheme for question paper design for conducting internal assessment examination: (Duration: 45minutes)

Questions to be set as per Bloom's Taxonomy				
	Distribution of Marks			
	Level 1 (Remember)	Level 2 (understand)	Level 3 (Apply & above)	Total
Class Test - 1	4	8	8	20
Class Test - 2	4	8	8	20

7. Suggested Scheme for End Semester Examination: [Duration 3 hours]

	Question Paper Type	Marks
1.	Objective type questions carrying 1 mark for 20 questions out of 25 questions throughout the syllabus.	1×20=20
2.	Questions carrying 2 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	2×5=10
3.	Questions carrying 6 marks for 5 questions (Subjective type) out of 8 questions (at least one question from each unit).	6×5=30

8. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators		
	Exceeds expectation (5)	Meets expectation (3)	Does not meet expectations (1)
1.			
3. Problem setup	Problems are translated into proper mathematical forms which are ready to be solved.	Problems are translated into mathematical forms which are ready to be solved with minor errors	Unable to translate problem into proper mathematical forms
4. Mathematical modeling	Combines mathematics and/or scientific principles to formulate models of thermodynamics;	Chooses, rather than develops, a mathematical model and/or scientific principle that applies to thermodynamics	Does not understand the connection between a mathematical model and/or scientific principles applied to thermodynamics
5. Engineering problem solving	Executes calculation correctly by hand and/or using math/engineering software	Minor errors in calculations by hand or using math/engineering software	Calculations not performed or performed totally incorrectly by hand or does not know how to use math/engineering software

9. Suggested Learning Resources:

Sl. No	Book Title	Author	Publisher
1	Chemical Process Safety	Daniel A. Crowl, Joseph F.	Pearson Education
	Fundamentals with Applications	Louvar	
2	Chemical Process Safety	Roy E. Sanders	Butterworth-Heinemann
	Learning from Case Histories		
3	Hazards and Safety in Process	Mihir Kumar Purkait, Piyal	CRC Press
	Industries	Mondal, Murchana	
	Case Studies	Changmai, Vikranth Volli,	
		Chi-Min Shu	
4	Safety in the Process Industries	Ralph King	Elsevier Science
5	Process Safety for Engineers	CCPS (Center for	Wiley
		Chemical Process Safety)	

Category: Program Core	Semester: Fifth
Code no.: CHEPC309	Practical: 100 Marks
Course Title: Mass Transfer Laboratory	Examination Scheme:
	i) Internal Assessment: 60 Marks
Duration: 17 weeks	[Continuous assessment of class performance and in the
	time of submission of assignment: 30 Marks
Total lecture class/week: 3	Viva voce: 20 Marks
Constitution 1	Class attendance: 10 Marks]
Credit: 1	ii) External Assessment: 40 Marks
	(End Semester Examination)
	[Assignment on the day of viva voce: 20 Marks
	Viva voce (before Board of Examiners): 20 Marks]
	(if the fore (before Board of Examiners). 20 marks]

1. Course Objectives:

1.	Proper handling of instruments.
----	---------------------------------

2.	Measuring physical quantities accurately.
3.	To observe the phenomenon and to list the observations in proper tabular form.
4.	To adopt proper procedure and precautions while performing the experiment.
5	To plot the graphs
6	To verify the principles, laws, using given instruments under different conditions.

2. Course Outcomes:

On co	mpletion of the course, students are expected to:
CO1	Illustrate proper procedure and precautions while performing the experiment.
CO2	Analyze the experimental data to obtain the relevant mass transfer equations.
CO3	Observe of the phenomenon and to list the observations in proper tabular form.
CO4	Validate the principles, laws, using given instruments under different conditions.

3. Pre-Requisites:

1.	Knowledge of basic concept on physics, Chemistry and Mathematics.
2.	Knowledge on basic mass transfer operations.

4. Suggested Assignments for Continuous Assessment:

Following assignments are to be attempted and corresponding reports should be prepared on A4 sheets or Laboratory Note Book:

Sl. No.	Name of the Experiment		
1	To determine molecular diffusivity of a volatile substance through a non-diffusing gas.		
2	To verify Rayleigh's equation for batch distillation of a binary mixture.		
3	To determine the partition coefficient of benzoic acid between water and benzene at room temperature.		
4	To study wetted wall columns.		
5	To study mass transfer in a spray tower.		
6	To study azeotropic distillation.		
7	Determination of wet bulb depression from thermometer and comparing with theoretical values.		
8	Determination of humidity from psychrometric chart using dry and wet bulb thermometer.		
9	Plotting of drying rate curve for atmospheric drying.		
10	Plotting of drying rate curve for drying in hot air oven.		
11	To determine the solubility of a substance at room temperature and also to draw its solubility curve.		
12	To determine the adsorption isotherm of acetic acid by activated charcoal		
13	Study of the adsorption of oxalic acid in aqueous solution on charcoal and prove the validity of Freundlich's adsorption isotherm and Langmuir adsorption isotherm.		
14	To determine the solubility of a substance in water at three different temperatures and calculate its enthalpy of solution.		

5. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators
1	Awareness about the significance of particular test
2	Presentation Skill
3	Setting and operation of experimental set up.
4	Observations and recording data.
5	Interpretation of result and conclusion
6	Submission of report in time

6. Suggested Learning Resources:

Sl.	Book Title	Author	Publisher
No			
1	Principles of Mass Transfer and Separation	B. K. Dutta	Prentice Hall of India
	Processes		
2	Mass Transfer Operations	Treybal	Mc Graw-Hill Book Co. Ltd., New York
			and Kogakusha Co Ltd., Tokyo.
3	Unit Operations of Chemical Engineering	Mc Cabe and Smith	Mc Graw-Hill Book Co. Ltd., New York
			and Kogakusha Co. Ltd., Tokyo.
4	Introduction to Chemical engineering	Badger and Banchero	McGraw-Hill Book Co. Ltd., New York
			and Kogakusha Co. Ltd., Tokyo
5	Introduction to Chemical Engineering	Ghosal, Sanyal, Dutta	Tata Mc Grow-Hill Pub. Co. Ltd., New
			Delhi
6	Chemical Engineering, Vol.1, 2, 4 & 5	Coulson and	Pergamon Press, Oxford
		Richardson	

Name of the Course: Diploma in Chemical Engineering		
Category: Program Core	Semester: Fifth	
Code no.: CHEPC311	Practical: 100 Marks	
Course Title: Chemical Reaction Engineering	Examination Scheme:	
Laboratory	i) Internal Assessment: 60 marks	
	[Continuous assessment of class performance and in time	
Duration: 17 weeks	submission of assignment:30 marks	
	Viva voce: 20 marks	
Total lecture class/week: 3 Class attendance: 10 marks]		
	ii) External Assessment: 40 Marks	
Credit: 1	(End Semester Examination)	
	[Assignment on the day of viva voce: 20 marks	
	Viva voce (before Board of Examiners): 20 marks]	
Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester		

examination separately.

7. Course Objectives:

1.	Proper handling of instruments.
2.	Measuring physical quantities accurately.
3.	To observe the phenomenon and to list the observations in proper tabular form.
4.	To observe the Reactions involved in the experiments.

8. Course Outcomes:

On com	On completion of the course, students are expected to:		
CO1	Illustrate proper procedure and precautions while performing the experiment.		
CO2	Analyze the experimental data to obtain the reaction rate expression (reaction order and specific reaction rate constant).		
CO3	Observe of the phenomenon and to list the observations in proper tabular form.		
CO4	Validate the principles, laws, using given instruments under different conditions.		

9. Pre-Requisites:

1.	Knowledge of basic concept on physics, Chemistry and Mathematics.
2.	Knowledge on basic chemical reaction and titration.

10. Suggested Assignments for Continuous Assessment:

Following assignments are to be attempted and corresponding reports should be prepared on A4 sheets or Laboratory Note Book:

Experiment No.	Name of the Experiment
1	Determination of reaction rate constant for the Hydrolysis of Ethyl Acetate catalyzed by Hydrochloric Acid (1st order) in a Batch Reactor.
2	Determination the order of reaction (n) and the reaction rate constant (k) for the given saponification reaction of ethyl acetate in aqueous sodium hydroxide solution in a Batch Reactor.
3	Determination of the rate constant of the Hydrolysis of Methyl Acetate in presence of an Acid Catalyst
4	To study the influence of Ionic strength on reaction between Potassium Persulphate and Potassium Iodide solution.
5	To study the kinetics of decomposition of Hydrogen peroxide in presence of Potassium Iodide.
6	To study the kinetics of Iodination of Acetone.

11. Rubrics for the Assessment of Students Activity: (20 marks)

Sl No.	Performance Indicators
1	Awareness about the significance of particular test
2	Presentation Skill
3	Setting and operation of experimental set up.
4	Observations and recording data.
5	Interpretation of result and conclusion
6	Submission of report in time

Sl. No.	Title of Book	Name of Authors	Publisher
1.	Chemical Reaction Engineering	Octave Levenspiel	Wiley Easter Ltd., New York.

2.	A Text book of Chemical Reaction Engineering	S C Roy and C Guha	Dhanpat Rai & Co. (P) Ltd.
3.	Elements of Chemical Reaction Engineering	H. Scott Fogler	Prentice Hall International Series

Name of the Course: Diploma in Chemical Engineering		
Category: Programme Core	Semester: Fifth	
Code no.: PR301	Laboratory: 100 Marks	
Course Title: Major Project	Examination Scheme: i) External Assessment: 40 Marks	
Duration: 17 weeks	(End Semester Examination)	
Total lecture class/week: 3	ii) Internal Assessment: 60 Marks	
Credit: 1	Assignment/viva voce: 10 Marks	
	Class allendance: TO Marks]	

Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester examination separately. Students should submit two separate reports one based on the general experiments carried out and another on the assigned project work.

1. Course Outcomes:

On completion of the course, the students will be able to		
CO 1	Understand and apply the concept of designing experiments	
CO 2	Analysis of generated data	
CO 3	Compare the generated data with related findings available in the literature	
CO 4	Display the findings in form of technical report and presentation	

2. Contents

Sl. No	Name of Experiment
1	General Experiments related to chemical engineering
2	Performing experiments/simulations related to assigned projects

3. Suggested Home Assignments/Students' Activities: Will be decided by the respective Lecturer

4. **Suggested scheme for question paper design for conducting internal assessment examination :**(Duration: 30 minutes)

Questions to be set as per Bloom's Taxonomy				
	Distribution of Marks			
	Level 1	Level 2	Level 3	Total
	(Remember)	(understand)	(Apply & above)	Total
Internal Viva-Voce	8	16	16	40

5. Suggested Scheme for End Semester Examination: [Duration 3 hours]

6. Rubrics for the Assessment of Students Activity: (20 marks)

Sl. No.	Title of Book	Author	Publication

1	Research Methodology:	C.R. Kothari	New Age International
	Methods and Techniques	Gaurav Garg	Publishers

Name of the Course: Diploma in Chemical Engineering		
Category: Programme Core	Semester: Fourth	
Code no.: PR301	Laboratory: 100 Marks	
Course Title: Major Project	Examination Scheme: i) External Assessment: 40 Marks	
Duration: 17 weeks	(End Semester Examination)	
Total lecture class/week: 3	ii) Internal Assessment: 60 Marks	
Credit: 1	Assignment/viva voce: 10 Marks Class attendance: 10 Marks	

Pass Criterion: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester examination separately. Students should submit two separate reports one based on the general experiments carried out and another on the assigned project work.

1. Course Outcomes:

On completion of the course, the students will be able to		
CO 1	Understand and apply the concept of designing experiments	
CO 2	Analysis of generated data	
CO 3	Compare the generated data with related findings available in the literature	
CO 4	Display the findings in form of technical report and presentation	

2. Contents

ſ

Sl. No	Name of Experiment
1	General Experiments related to chemical engineering
2	Performing experiments/simulations related to assigned projects

- 3. Suggested Home Assignments/Students' Activities: Will be decided by the respective Lecturer
- **4**. **Suggested scheme for question paper design for conducting internal assessment examination :**(Duration: 30 minutes)

Questions to be set as per Bloom's Taxonomy				
	Distribution of Marks			
	Level 1 (Remember)	Level 2 (understand)	Level 3 (Apply & above)	Total
Internal Viva-	8	16	16	40
Voce				

5. Suggested Scheme for End Semester Examination: [Duration 3 hours]

- 6. Rubrics for the Assessment of Students Activity: (20 marks)
- 7. Suggested Learning Resources:

Sl. No.	Title of Book	Author	Publication
1	Research Methodology :	C.R. Kothari	New Age International
	Methods And Techniques	Gaurav Garg	Publishers

Name of the Course: Diploma in Chemical Engineering		
Category: Programme Core	Semester: Fifth	
Code no.: SI301	Laboratory: 100 Marks	
Course Title: Internship II	Examination Scheme: i) External Assessment: 40 Marks	
Duration: 17 weeks	(End Semester Examination)	
Total lecture class/week:	ii) Internal Assessment:60 Marks	
Credit:1	[Class Test: 40 Marks Assignment/viva voce: 10 Marks Class attendance:10 Marks]	
Pass Criterion: Students have to obtain at lea	act 40% marks (nass marks) in both internal assessment and end semester	

nave to obtain at least 40% marks (pass marks) in both internal assessment and end semester examination separately.

2. Course Outcomes:

On completion of the course, the students will be able to		
CO 1	Understand and operate different software	
CO 2	Understand the working of industrial batch or continuous setup	
CO 3	Understand, and prepare optimization or mathematical modeling of chemical engineering problems	

3. Contents

Г

Sl. No	Description of work (any one of the following activities must be performed)
1	Student must undergo 2–6-week vocational training at a working chemical plant/industry.
	Prepare a detailed technical report of the training
2	Student may undergo online certification course from reliable platforms under one of the
	following probable topics
	Aspen Plus simulation Software: a basic course for beginners
	Optimization in chemical engineering
	Mathematical modeling and simulation of chemical engineering process
	Fundamental Algorithms: Design and Analysis
	Scientific Computing using MATLAB
	Computer Aided design-based course
	Computer Aided Manufacturing based course
	Basic course on SCILAB
	Basic course on DWSIM
	Basic and advance course on Microsoft excel VBA
	• Or any other application/design-based course which is not incorporated in regular
	curriculum
	Note: In a segmentic in which a student is unable to undergo Vegetional training at industrial
	manufacturing unit in gither of the semester, and had completed any cartification course in
	INTERNSHIP 1 must adapt the software learnt in Internship 1 to solve higher order problem
	such as mass/energy balance across a manufacturing unit ontimization of a distillation column
3	Student may get trained at government ITI centers for hands on skills such as fitting crafting
0.1	drafting, welding etc.
4.	Student may undertake one of following courses under the guidance of institute and prepare a
	detailed report which must include application-based approach on the subject:
	• Plant design and economics
	• Application of numerical methods in chemical engineering
	• Or similar subjects may be prescribed by the institute

Note: In a scenario in which a student is unable to undergo Vocational training at industrial manufacturing unit, and had completed any certification course in INTERNSHIP 1, must adapt the subject learnt in Internship 1 to solve higher order problem such as mass/energy balance across a manufacturing unit, optimization of a distillation column, multicomponent
absorption or fractional distillation etc

4. Suggested Home Assignments/Students' Activities: Will be decided by the respective Lecturer