West Bengal State Council of Technical & Vocational Education and Skill Development (Technical Education Division)

Syllabus of

Diploma in Electronics & Instrumentation Engineering [EIE]

Part-III (5th Semester)

Revised 2022

Electronics & Instrumentation Engineering

	Semester V								
Sl.	Category	Code No.	Course Title		Hours Per		Total	Credits	Marks
No.				L	week T	P	Contact hrs/week		
1	Program Core Course	EIEPC301	Process Instrumentation -II	2	1	1	3	3	100
2	Program Core Course	EIEPC303	Microprocessor	2	1		3	3	100
3	Program Core Course	EIEPC305	Process Control -II	2	1		3	3	100
4	Program Core Course	EIEPC307	Analytical Instrumentation	2			2	2	100
5	Program Core Course	EIEPC309	Process Instrumentation -II Lab			2	2	1	100
6	Program Core Course	EIEPC311	Microprocessor Lab			2	2	1	100
7	Program Core Course	EIEPC313	Process Control Lab			2	2	1	100
8	Program Elective Course	EIEPE301	Biomedical Instrumentation Or Application of Robotics and CNC	2			2	2	100
9	Program Elective Course	EIEPE303	Electronic Communication Principle Or Control Theory	2			2	2	100
10	Internship- II (after Semester IV)	SI301						1	100
11	Minor Project	PR301				4	4	2	100
	TOTAL						25	21	1100

Semester	:	V
Course Code	:	EIEPC301
Course Title	:	Process Instrumentation -II
Number of Credits	:	3 (L:2, T:1, P:0)
Prerequisite	:	Basic idea of Physics, electronics, Instrumentation
Course Category	:	PC

- ❖ To provide sound knowledge about various techniques used for the measurement of industrial parameters and processes.
- ❖ To have adequate knowledge of construction and working of various measuring instruments used for industrial purposes.
- To have sound knowledge about the calibration of various industrial instruments
- ❖ To get exposure on Humidity and Moisture measurement
- To provide sound knowledge on Hazardous and industrial safety
- ❖ To introduce HART and Field Bus

ntent		Hrs/Unit
Unit 1	Temperature Measurement	9
	 1.1 Temperature scale - ITS 90, Different types of Thermometers- liquid in glass, liquid in metal, bimetallic thermometer 1.2 Thermocouple: construction, Output equation, thermocouple materials, cold junction compensation, range and types of different thermocouples, thermowell 1.3 RTD: construction & composition of RTD, output equation, Pt100, Two wire three wire & four wire RTD, Self-heating error. 1.4 Thermistor: construction & composition of thermistor, types of thermistors, Output equation. 1.5 Non-contact type temperature measurement: Radiation & Optical Pyrometer 1.6 Semiconductor type temperature sensor 	
Unit II	Flow Measurement	9
	 2.1 Bernoulli's theorem, turbulent & laminar flow, Reynolds number 2.2 Head type: Orifice, Venturi 2.3 Area type: Rotameter 2.4 Electrical type: Electromagnetic, Turbine, Ultrasonic & Vortex Flow Meter 2.5 Mass Flowmeter: Coriolis, Thermal 	
		Unit 1 Temperature Measurement 1.1 Temperature scale - ITS 90, Different types of Thermometers- liquid in glass, liquid in metal, bimetallic thermometer 1.2 Thermocouple: construction, Output equation, thermocouple materials, cold junction compensation, range and types of different thermocouples, thermowell 1.3 RTD: construction & composition of RTD, output equation, Pt100, Two wire three wire & four wire RTD, Self-heating error. 1.4 Thermistor: construction & composition of thermistor, types of thermistors, Output equation. 1.5 Non-contact type temperature measurement: Radiation & Optical Pyrometer 1.6 Semiconductor type temperature sensor Unit II Flow Measurement 2.1 Bernoulli's theorem, turbulent & laminar flow, Reynolds number 2.2 Head type: Orifice, Venturi 2.3 Area type: Rotameter 2.4 Electrical type: Electromagnetic, Turbine, Ultrasonic & Vortex Flow Meter

		2.7 Solid flow m	a a a symptom a m t					
		2.7 Solid flow m	leasurement					
		2.9 Zero span ca	libration					
		2.5 Zero span ea	norum					
Module 2	Unit III	Level Measurer	nent		7			
			float & displacer type					
		3.2 Differential I	* *					
		_	Conductivity type					
			onic & nuclear type					
		3.5 Level switch						
		3.6 Zero span ca	3.6 Zero span calibration					
	Unit IV	Measurement o	f Humidity and Moisture		6			
			Moisture, Absolute Humidit	y, Relative				
			ue point temperature					
		_	iples of hygrometers, psyc	chrometers,				
		humidity cha						
			t systems for humidity,	1				
			pisture measuring systems,	radioactive				
		moisture mea	asuring systems					
Module 3	Unit V	Instrumentation	n in Hazardous Location		7			
		5.1 Definition	of Hazardous area & Safe	area, Area				
			, Material classification					
			5.2 Explosion proof enclosure, Pressurization, Intrinsic					
		safety	. I DDE					
		5.3 IP type, safet	ty triangle, PPE.					
	Unit VI	HART and Fiel	d Bus		7			
		6.1 4-20 mA cur	rent transmission, live and dea	d zero				
		6.2 Introduction						
			munication protocol, HART	networks,				
			nands, HART applications	D				
			General Fieldbus architectu of Fieldbus standard, Fieldbu	,				
		-	ity, Interchangeability.	s topology,				
		Interoperation	ity, interentingenomity.					
Suggested	Learning	resources		T				
m:41.			A sette on	Druhlishou				
Title Principles of Industrial			Author	Publisher				
Instrumentation			D. Patranabis	TMH				
Measurement System Application &			E.O. Doeblin	Mc Graw Hil	1			
Design			L.O. DOCUIII		1			
Introduction to Measurement &			Ghosh	PHI				
Instrumentation				0.6.177				
Instrument	Transduce	r	H K P Neubert	Oxford University Press				
			<u>i</u>	I				

Industrial Instrumentat	tion & Control	S K Singh	TMH	
Instrument Engineers' I: Process Measuremen	· · · · · · · · · · · · · · · · · · ·	Bela G. Liptak	CRC Press, Taylor &Francis	
Sensors & Transducers	S	D. V. S. Murty	PHI	
A Course in Electrical	& Electronics	J.B. Gupta	S. K. Kataria Pub.	
Measurement & Instru	mentation	J.D. Gupta	Co	
The Essence of Measur	rement	Allan Morris	PHI	
Mechanical Measurem	ents	Beckwith, Buck & Marangoni	Narosa Pub. House	
Electrical and Electron Measurements and Ins		A. K. Sawhney	Dhanpat Rai & Co.	
Instrumentation & Cor	ntrol	Reddy, P S R Krishnudu	Scitech	
Handbook of Modern S	Sensors	Fraden, Jacob	Springer	
Course Outcome				
At the end of the course student will be able to:	 Acquire the knowledge of purpose and scope of instrumentation in Industrial processes Be competent to handle different types of temperature measuring instruments and their application in various Industrial processes 			

Semester	:	V
Course Code	:	EIEPC303
Course Title	:	Microprocessor
Number of Credits	:	3 (L:2, T:1, P:0)
Prerequisite	:	Idea on Digital Electronics
Course Category	:	PC

Following are the objectives of this course

purposes

- ❖ To understand the general architecture of a microcomputer system
- ❖ To comprehend the architecture and organization of 8085 and 8086 microprocessor

3. Be conversant in construction and working of various flow, level, moisture, and Humidity measurement devices used for industrial

4. Understand the calibration of various industrial instrument5. Identify specific instrument can be used in Hazardous location

6. Use HART and Field bus technology in industries.

- ❖ To learn the Interfacing of 8-bit microprocessor with memory and peripheral chips involving system design
- ❖ To interpret and classify the instruction set of 8085 microprocessor and distinguish the use of different instructions and apply it in assembly language programming

Course Co	ntent		Hrs/Unit
Module 1	Unit 1	Introduction to Microprocessor	4
		1.1 Von Neumann & Harvard architecture	
		1.2 Microprocessor definition1.3 Block diagram of Microprocessor based system	
		1.4 Machine Language, Assembly language, High level	
		Language, Assembler, Compiler	
	Unit II	Microprocessor Architecture & memory Interfacing	8
		2.1 8085 architecture and its functional block	
		2.2 Pin details of Intel 8085 chip	
		2.3 De-multiplexing address and data bus, generation of control signals	
		2.4 Machine Cycle, Instruction Cycle, Timing Diagram	
		2.5 Hardware Interfacing or Types of I/O addressing-	
		Interfacing Memory and Peripheral (I/o Mapped I/O	
		and memory mapped I/O)	
Module 2	Unit III	Programming of 8085 Microprocessor	10
		3.1 Instruction set of 8085	
		3.2 Addressing modes	
		3.3 Writing assembly language program- looping,	
		counting, indexing, BCD arithmetic, stack and	
		subroutine, Delay, conditional call & return instruction	
		3.4 Stack and subroutine	
	Unit IV	Peripheral Interface	8
		4.1 8255: Block diagram, Interfacing of 8255 with 8085	
		microprocessor and programming.	
		4.2 ADC (0801/0808) and DAC (0808/0809) interfacing	
		and programming	
		4.3 Interfacing with Stepper Motor	
Module 3	Unit V	Interrupt of 8085	8
		5.1 8085, RST instruction, vectored interrupts	
		5.2 8259 Programmable Interrupt Controller - Internal	
		structure, pin diagram and modes of operation.	
	Unit VI	Introduction to 8086 Microprocessor	7
		6.1 Features of 8086 (16-bit Microprocessor),	
		6.2 Architecture of 8086,	
		6.3 Concept of parallel processing in 8086.	
0 (3)			
Suggested	Learning 1	resources	

Title	Author	Publisher
Microprocessor Architecture,	R. S. Gaonkar	Wiley
programming & applications		
Microprocessor & Microcontroller	N Senthil	Oxford University
		press
Microprocessor and Microcontroller	Kumar, Saravanan,	Oxford University
	Jeevananthan	Press
Introduction to Microprocessor	A.P. Mathur	TMH
Digital Circuits & Microprocessors	Herbert taub	TMH Pub.
Microprocessor Interfacing &	Azeez, Shemeena	Scitech
Microcontroller		
Computer system Architecture	Morris Mano	PHI India
Computer organization & Design	P. Pal Choudhuri	PHI
The 8085 Microprocessor:	Udaykumar	Pearson
Architecture,		
Programming & Interfacing		
The 8085 Basic, Programming &	Kulkarni, Sontakke	SadhuSudha
Interfacing		Prakasan
Microprocessor and Interfacing	D. Hall	TMH
Microprocessor & Peripherals	Chowdhury et al	Scitech
Course Outcome		

At the end of the
course student will
be able to:

- 1. Describe the general architecture of a microcomputer system
- 2. Understand the architecture and organization of 8085 and 8086 microprocessor
- 3. Construct the Interfacing of 8-bit microprocessor with memory and peripheral chips involving system design
- 4. Interpret and classify the instruction set of 8085 microprocessor and distinguish the use of different instructions and apply it in assembly language programming
- 5. Understand the architecture and operation of Programmable Interface Devices and realize the programming & interfacing of it with 8085 microprocessors

Semester	:	V
Course Code	•	EIEPC305
Course Title	:	Process Control - II
Number of Credits	•	3 (L:2, T:1, P:0)
Prerequisite	:	Basics on Process measurement
Course Category	:	PC

- ❖ To realize the need and importance of automation in process industries
- ❖ To draw P&I diagram of different process and realization of control scheme.
- ❖ To provide knowledge on different advanced control techniques like Ratio, Feed forward, Cascade
- ❖ To understand Programmable Logic Controllers (PLCs) and learn their programming
- ❖ To understand the significance and application of DDC, DAS, DCS, SCADA, Drive in process automation industry

Course Co	ntent		Hrs/ Unit
Module 1	Unit 1	Process Drawing 1.1 Concept and definition of P&I diagram.	9
		1.2 ISA symbols: Line types, Instrument bubbles, Process valves, Actuators.	
		1.3 Instrument identification tag	
		1.4 P&I Diagrams of different control scheme	
		1.5 Loop diagram concept	
	Unit II	Advanced Control Techniques	4
		2.1 Ratio control.	
		2.2 Cascade control.	
		2.3 Feed forward control.	
Module 2	Unit III	DDC and DAS	4
		3.1 DDC: Concept, block diagram, operation, advantages and disadvantages.	
		3.2 DAS: Concept of Data Acquisition System, Block Diagram explanation of multichannel DAS.	
	Unit IV	PLC and Drive	10
		4.1 Introduction to PLC: What is PLC, Block diagram explanation of PLC, limitations of relay logic, Advantages of PLCs over electromagnetic relays.	
		4.2 Different programming languages used in PLC	
		4.3 Modules in PLC.	
		4.4 Source - sink concept of PLC	

		4.5 Ladder Diagram Programming: Programming based on basic instructions, timer, counter, and comparison							
		instructions using la		and comparison					
		4.6 V.F.D. (Variable Fi	1 0	nerating principle					
		and application							
	Unit V	DCS and SCADA			10				
Module 3		 5.1 DCS: Concept of centralized and distributed control systems, PLC vs DCS, DCS architecture, brief view on operator station, engineering station, field control station, communication techniques between different modules, concept of different standard panels like over view, graphic, tuning, control, alarm etc., and applications. 5.2 SCADA: Architecture, SCADA hardware and software, modems use in SCADA, communication techniques, RTU structure, SCADA application in industry 							
	Unit VI	Miscellaneous Process	Plant Control Sch	eme	8				
		6.1 Boiler drum level co	ontrol in thermal po	wer plant – single					
		element, two elemen							
		6.2 Combustion control							
		6.3 Control scheme of	distillation column	n – overhead and					
		bottom product. 6.4 Temperature control	in cooking nit in etc	aal nlant					
		0.4 Temperature control	in soaking pit in su	er plant.					
Suggested	Learning 1	resources							
Title			Author	Publisher					
		ple & Application	S Bhanot	Oxford University	Press				
		ept Dynamics &	S. K. Singh	PHI					
Application		Company 1		Ma Cassa II:11					
Principles of		Handbook: Process	D. Patranabis	Mc Graw Hill CRC Press, Taylo	r &r				
	_	tion, Vol – II	Bela G Liptak	Francis Group	ı x				
		trol: An Introduction to		•					
Theory & F			Stephanopoulos	Pearson					
		nmentals for Process	D O I Daga						
Control			D. O. J. Desa Taylor & Francis						
Modern Co		•	K Ogata	PHI					
		l Process Control	D. P. Eckman	J. Wiley & Sons					
Automatic			D. P. Eckman	J. Wiley & Sons					
	•	Engineering	Gupta	Wiley India					
		mentation Technology	Curtis Johnson	PHI Wiley India					
Automatic			Kuo	Wiley India Chilton Book Co.					
		Handbook, vol. I to III, Acquiring & Process	Liptak, B. G. S. Gupta, J P	Instrument Societ	v of				
Control	c 101 Data 1	Acquiring & 1100088	Gupta, J P	America.					
Connoi			σαρια	micrica.					

Distributed Computer control & Industrial	Bhatkar,	Dekker Publication.
Automation	Marshal	
Programmable Logic Controllers	John W. Web,	PHI
	Ronald A. Reis	
Programmable Controllers: An Engineers'	Parr A	Newnes, Butterworth-
Guide		Heinneman Ltd
Programmable controllers: Principle and	Webb J. W	PHI New Delhi
Applications		
Programmable Logic Controller	Job Dan Otter	P.H. International
Introduction to PLCs	Gary Dunning	McGraw Hill
Module on PLCs and their Applications	Rajesh Kumar	NITTTR Chandigarh
Basic Instrumentation & PLC	U Rathore	S K Khataria
Programmable Logic Controllers	Frank D.	McGraw Hill
	Petruzella	

Course Outcome

At the end of the course student will be able to:

- 1. Draw P&I diagram of different process and realization of control system in it.
- 2. Define, identify and implement different advanced control strategies in process automation
- 3. Understand the need for automation in process industries and learn integration of PLC, DCS, SCADA in process industries
- 4. Program PLC and solve critical control logics to control and run the process
- 5. Explain about DCS, SCADA and their usage in process automation and associated communication networks.
- 6. Demonstrate and explain different control schemes for different specific plant operations.

Semester	:	V
Course Code	:	EIEPC307
Course Title	:	Analytical Instrumentation
Number of Credits	:	2 (L:2, T:0, P:0)
Prerequisite	:	Basic knowledge on Physics and Chemistry
Course Category	:	PC

- ❖ To provide various techniques and methods of analysis which occur in the various regions of the spectrum. These are the powerful tools used in clinical and research laboratories.
- ❖ To give unique methods of separation of closely similar materials, the most powerful being gas chromatography.
- ❖ To study important methods of analysis of industrial gases. Awareness and control of pollution in the environment is of vital importance.
- ❖ To provide knowledge on NMR techniques in structure determination.

a a			TT /TT **
Course Co	ntent		Hrs/Unit
Module 1	Unit 1	Spectrophotometry	6
		1.1 Spectral methods of analysis – Beer-Lambert law	
		1.2 UV-Visible spectroscopy.	
		1.3 IR Spectrophotometry: FTIR, FTNIR	
		1.4 Atomic absorption spectrophotometry - Flame	
		emission and atomic emission photometry	
		(Construction, working principle, sources detectors and	
		applications).	
		applications).	
	Unit II	Water Quality Analysis	5
		2.1 pH: definition, scale, Nernst equation, pH sensitive	
		electrodes, Principle of operation of pH meter.	
		2.2 Dissolved oxygen analyser, Sodium analyser, Silicon	
		analyser, Phosphate analyser, Chlorine analyser -	
		function.	
		2.3 Conductivity analysis	
		2.5 Conductivity undrysis	
Module 2	Unit III	Industrial Gas Analysers	5
		3.1 Paramagnetic, Magnetic wind type, Zirconia O2	
		analysers	
		3.2 IR/NDIR (for CO, CO2, O3, NO2, SO2, H2S, NH3 etc.)	
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Unit IV	Nuclear Magnetic Resonance and Mass Spectrometry	5
		4.1 NMR: Feature, Basic principles, Instrumentation.	
		Fourier Transform NMR spectroscopy	
		4.2 Mass Spectrometry: Feature, Mass spectrum, Basic	
		principle, Instrumentation, working principle.	
		principle, including morning principle.	

Madria 2	Unit V	Chamatan			<u> </u>
Module 3	Module 3 Unit V Chromatograph 5.1 GC: Function, Basic parts of GC, Instrumentation,			ym antation	5
		I .	-		
	function of different parts of GC, detectors used in GC. 5.2 HPLC: Use, Instrumentation, description of				
				ription of	
		components, Operation, Detectors.			
	Unit VI		Analytical Process		4
		I .	onitoring control and stack analy	ysers	
		6.2 Waste water	*		
			nt Treatment Plant)	S. Svietom)	
		6.5 Blast furnace	ver plant (Steam Water Analysis	s System)	
		6.6 NCU (Napth			
		6.7 Industrial Ai			
			get idea on Process and name	of different	
		analysers used the	_		
		_			
Suggested	Learning :	resources		<u> </u>	
Title			Author	Publisher	
Handbook	of Analytic	cal Instruments	R S Khandpur	TMH	
Instrumental Methods of Analysis			Willard, Merrit, Dean & Settle	CBS Pub.Co.	
Analysis In	strumentat	ion	R.P.Khare	CBS	
Analytical Instrumentation			Skoog & Larry	Saunders Pub. Co.	
Instrumenta	ation Hand	book	B. Liptak	Butterworth-	
			_	Heinmann.	
Principle of	f Industrial	Instrumentation	D Patranabis	TMH	
Quantitativ	e analysis		R.A.Day & A.L.Underwood	Prentice-Hall of	
·				India Pvt. Lt	d.
Instrumental Methods of chemical Analysis		of chemical	Ewing	McGraw-H	ill Inc
Instrumental Methodology of Analysis		ology of Analysis	Chatwal, Anand	Himalaya publishing house	
Instrumental Method of Analysis		of Analysis	D Muralidhara Rao	CBS Publish	ners &
				Distributor	
Course Ou					
At the end			elevant analytical instruments f		
course stud	ent will		e instruments based on absorp	otion spectros	copy and
be able to:		separation te	-		
			se relevant analytical instrument	t for specified	industria
		gases.	calculated that	4	-1:4-
		4. Maintain an environment	nalytical instruments to monit	tor water qua	anty and
		- environment	DOMINIANIS		

Semester	: V
Course Code	: EIEPC309
Course Title	: Process Instrumentation -II Lab
Number of	: 1 (L:0, T:0, P:2)
Credits	
Prerequisite	: Basics on process parameter measurement
Course	: PC
Category	
Course Object	
Following are	the objectives of this course
1	To provide knowledge on temperature, flow and level measurement.
1	To educate with different parts of control valve.
	cal work/experiments to be performed to achieve following aims.
Sl. No.	Aims:
1	Temperature measurement using the following instruments (at least three
	types):
	a. RTD
	b. Thermocouple
	c. Thermistor
	d. AD590
	e. Pyrometer
	(Student must know the basic operating principle of sensor, change the
	temperature and take readings, if and where possible calculate the error, if any)
2	Flow measurement using the following instruments (at least three types):
2	a. Orifice
	b. Venturi
	c. Rotameter
	d. Magnetic flow meter
	e. D/P transmitter
	(Student should know the operating principle of sensor/ instrument. Use
	water as a fluid flow, take the reading of water flow. Where possible collect
	the total water for certain time duration and tally with the reading from
	flowmeter)
3	Level measurement using the following instruments (at least three type):
	1. Conductivity gage
	2. Capacitive gage
	3. Gauge glass
	4. Float type
	5. Displacer type
	(Student should know the operating principle of sensor/ instrument. Take
	reading from instrument. Where possible take physical level reading and
4	tally with the instrument reading. If any difference, calculate the error.
4	Study the different parts of Control Valve.
5	Stroke checking of control valve.

Course Outco	Course Outcome					
At the end of the course student will be able to:	 Build temperature measuring system with RTD, Thermocouple, Thermistor, AD590, Pyrometer and measure temperature Construct flow measuring system with Orifice, Venturi, Flow nozzle, Rotameter, D/P Transmitter and measure flow. Develop level measuring system with Conductivity gauge, Capacitive gauge, Gauge glass, Float type, Displacer type and measure level. Demonstrate different parts of control valve and explain valve stroke checking procedure. 					

Semester	· V		
Course Code	: EIEPC311		
Course Title	: Microprocessor Lab		
Number of	: 1 (L:0, T:0, P:2)		
Credits			
Prerequisite	: Idea on digital electronics		
Course	: PC		
Category			
Course Object	tive		
Following are	the objectives of this course		
	Develop assembly language programs using instruction set of 8085		
	❖ Design and develop microprocessor interfacing with different peripheral		
	devices.		
	al work/experiments to be performed to achieve following aims.		
Sl. No.	Aims:		
1	Introduction to Microprocessor Trainer Kit and identify the different		
1	peripheral devices, bus architecture on it.		
2	o write program using data transfer instructions.		
3	To write program using arithmetic instructions		
4	To write program using Logical instructions		
5	write program using branching instructions		
6	write program and demonstrate delays & subroutines.		
7	study the Binary to BCD conversion		
8	To demonstrate the programming & interfacing of 8255 Programmable		
o	Peripheral Interface.		
9	To write program for interfacing ADC and DAC		
	(Student should write the programming in assembly language, run the		
	program in Microprocessor training kit and / or simulation software.)		

Course Outco	ie –
At the end of	1. Write assembly programs to run on 8085 microprocessor and systems
the course	based on it
student will be able to:	2. Understand and develop techniques for faster execution of arithmetic and logical operations
	3. Understand and realize the Interfacing of memory & various I/O devices with 8085 Microprocessor
	4. Design applications based on microprocessor 8085 using memory chips and peripheral ICs
	5. Undergo minor projects based on 8085 assembly language programming

Semester	: V
Course Code	: EIEPC313
Course Title	: Process Control Lab
Number of	: 1 (L:0, T:0, P:2)
Credits	
Prerequisite	: Basic idea on process and measuring instruments
Course	: PC
Category	
Course Object	tive
Following are	the objectives of this course
	❖ To provide idea about temperature, flow and level control.
	❖ To draw P&I diagram of different systems.
	❖ To write Ladder programming for PLC.
List of Praction	cal work/experiments to be performed to achieve following aims.
Sl. No.	Aims:
1	Temperature control using ON OFF controller and temperature sensor.
2	Level control using D/P transmitter, single loop controller & control valve.
3	Level control using level switch and controller.
Flow control using orifice, D/P transmitter, single loop control	
	control valve.
5	Flow control using mass flow meter, single loop controller and control valve.
6	Draw P&I diagram of a specific control loop using ISA symbols.
7	PLC programming with <u>Ladder diagram</u> .
	(Concern teacher should assign at least 10 problems, as per his/her choice,
	for programming. Few sample examples given here)
	To start and stop a motor using START STOP switch.
	Design all fundamental logic gates
	Design for latching operation
	Design various arithmetic operations
	Design various logical operations
	Design various logical operations

- Design program for blinking LEDs
- Design for implementing a digital timer
- Design for implementing a digital counter
- Design for a temperature control system
- Design for a flow control system
- Control the level of overhead tank. The control is performed when reservoir is having at least certain level of water.

Course Outcome

At the end of
the course
student will
be able to:

- 1. Build Control strategy using ON OFF controller and temperature sensors to control temperature.
- 2. Construct level control strategy using D/P transmitter & control valve and level switch and controller
- 3. Develop flow Control strategy using D/P transmitter & control valve and mass flow meter and control valve
- 4. Draw P&I diagram of any control loop using ISA symbols
- 5. Design PLC Ladder programming to solve different process logics

Semester	:	V
Course Code	:	EIEPE301/1
Course Title	:	Biomedical Instrumentation
Number of Credits	:	2 (L:2, T:0, P:0)
Prerequisite	:	Idea about human biology, basic sensors and transduces.
Course Category	:	PC

Course Objective

- To identify and describe various biomedical signals.
- To describe the origin of biopotentials and explain the role of biopotential electrodes
- To understand the synchronization between physiological systems of the body.
- To understand the basic measurement principles behind biomedical instrumentation.
- To realize the working principle of numerous biomedical imaging techniques.
- To analyse the applications of biosensing in different domains of healthcare.

Course Con	ntent		Hrs/ Unit
Module 1	Unit 1	Biopotential, Bioamplifiers, Bioelectrode 1.1 Introduction to bio-electric potential, bioamplifier 1.2 Transducers to measure various physiological events 1.3 Types of bio-potential electrodes (Body surface electrodes, Internal electrodes, Micro electrodes) 1.4 Properties of electrodes	4

	TI24 TT	Cardia a Vagardan Cratam & Magarmananta	5			
	Unit II	Cardiac Vascular System & Measurements	5			
		2.1 ECG: origin, Instrumentation, bipolar lead				
		system (I, II, III), Einthoven's triangle, Augmented lead				
		system, unipolar chest lead system, types of display.				
		2.2 Blood pressure measurements: direct, indirect.				
		2.3 Defibrillators: AC, DC- circuit				
		2.4 Pacemaker: Internal, External				
		2.5 Oximeters				
Module 2	Unit III	Pagniratory Maggurament Systems	5			
Module 2	Omt III	Respiratory Measurement Systems:	3			
		.1 Types of volume, types of measurements, Instrumentation				
		of respiratory system, pneumograph, Capnograph				
		Spirometer, pneumotachometers, nitrogen wash out technique.				
		technique.				
	Unit IV	Nervous system	5			
	CIMOLY	4.1 Action potential of brain, brain wave,				
		4.2 Instrumentation of Electroencephalography (EEG),				
		electrodes used for recording EEG analysis.				
		cicculous used for recording 220 unarysis.				
	Unit V	Medical Imaging Technique	6			
Module 3		5.1 Ultrasonography (Basic concept and basic block diagram)				
		5.2 Thermal imaging system, working, IR detectors,				
		applications.				
		5.3 Radiography: conventional X-ray, properties, generation of				
		X-ray, Fluoroscopy				
		5.4 Fundamental concepts of an image processing system such				
		as image acquisition, enhancement, segmentation,				
		transforms, compression, morphology.				
	IIn:4 VI	Misselloneous Medical Equipment				
	Unit VI	Miscellaneous Medical Equipment				
		* *	5			
		6.1 Audiometry equipment's and hearing aids	5			
		6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems.	5			
		6.1 Audiometry equipment's and hearing aids6.2 Foetal and neonatal monitoring systems.6.3 Important of anaesthesia machine	5			
		6.1 Audiometry equipment's and hearing aids6.2 Foetal and neonatal monitoring systems.6.3 Important of anaesthesia machine6.4 Idea on Surgical equipment	5			
		 6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 	5			
		 6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 6.6 Heart lung machine and its application 	5			
		 6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 	5			
		 6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 6.6 Heart lung machine and its application 	5			
Suggested	Learning 1	 6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 6.6 Heart lung machine and its application (Brief idea and application only) 	5			
Suggested	Learning 1	 6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 6.6 Heart lung machine and its application (Brief idea and application only) 	5			
Suggested Title	Learning :	 6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 6.6 Heart lung machine and its application (Brief idea and application only) 	5			
Title		6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 6.6 Heart lung machine and its application (Brief idea and application only)				
Title Handbook	of Bio-Med	6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 6.6 Heart lung machine and its application (Brief idea and application only) resources Author Publisher	1			
Title Handbook	of Bio-Med	6.1 Audiometry equipment's and hearing aids 6.2 Foetal and neonatal monitoring systems. 6.3 Important of anaesthesia machine 6.4 Idea on Surgical equipment 6.5 Idea on instruments used in ICU/ICCU 6.6 Heart lung machine and its application (Brief idea and application only) resources Author Publisher dical Instrumentation R. S. Khandpur Tata McGraw-Hil	1			

Diamadical Engineering	ng and Instrumentation	Joseph Pronzino	DWC Enga Poston			
	ng and Instrumentation	Joseph Bronzino	PWS Engg ,Boston			
Bioinstrumentation		J.Webster	Wiley &Sons			
The Biomedical Engin	eering handbook	Joseph	CRC Press			
		D.Bronzino				
Introduction to Biome	dical Equipment	Carr J. J, Brown	Pearson Education Inc			
Technology		J. M.				
Principles of Biomedia	cal Instrumentation &	Richard Aston	Merrill Publishing			
Measurement			Company			
Introduction to Biome	dical Instrumentation	Mandeep Singh	PHI learning private			
			limited			
Software/ Learning V	Vebsites:					
Course Outcome						
At the end of the	1. Analyse the origin o	f various bioelectric	e signals (ECG, EEG) and			
course, student will	the method of record	ing using different t	ypes of electrodes.			
be able to:	2. Develop the basic k	knowledge about C	ardiovascular, respiratory			
	and nervous system.	_	-			
	_	tanding of the mo	easurement principles of			
			asurement of respiratory			
			ssure as well as medical			
	devices	pros	75 020 U 5 (V 011 U 5 1110 U10 U 2			
	4. Compare the working of various medical imaging techniques					
	_	including X-ray, and ultrasonography				
			with the help of respective			
	_	cuicai mstruments v	with the help of respective			
	transducers					

Semester	:	V
Course Code	•	EIEPE301/2
Course Title	:	Application of Robotics and CNC
Number of Credits	:	2 (L:2, T:0, P:0)
Prerequisite	:	Basic engineering
Course Category	:	PC

- To provide fundamental concept of robotic mechanism and operation
 To get familiar about the fundamentals of CNC application

Course Co	ntent		Hrs/Unit
36.13.6	T T 1: 4		
Module 1	Unit 1	Fundamentals of Robot	6
		1.1 Definition	
		1.2 Functional components of Robot connected as a	
		system. 1.3 Basic motion or degrees of Freedom (DOFs)	
		1.4 Mechanical configuration: Cartesian coordinate,	
		Cylindrical, spherical, Jointed-arm configuration.	
		1.5 Different types of robot joints/pairs use in robots.	
		1.6 Industrial robot and its application	
		1.7 Work envelop/ Workspaces with Rectangular,	
		Cylindrical and spherical kinematic configuration	
	Unit II	Robotic End Effector	5
		2.1 Definition	
		2.2 Types of end effector	
		2.3 Classification of end effector	
		2.4 Commonly used gripper mechanism	
		2.5 Various Design of gripper finger	
		2.6 Drive methods used for robot gripper system	
Module 2	Unit III	Robotic Sensors	5
		3.1 Classification of robotic sensor	
		3.2 Tactile sensor, Position and Displacement sensor	
		3.3 Force and torque sensor	
		3.4 Proximity sensor	
		3.5 Range sensor	
		3.6 Architecture of a computer based intelligent robotic	
		manipulator 3.7 Scheme of robot sensors	
		3.7 Scheme of Tobot sensors	
	Unit IV	Robotic Vision	4
		4.1 Definition	
		4.2 Robotic vision system	
		4.3 Components of vision system.	
		4.4 Advantage of machine vision	
Module 3	Unit V	CNC Introduction	5
		5.1 Introduction to NC / CNC	
		5.2 Advantages and disadvantages of NC/CNC over	
		conventional machine tool.	
		5.3 Block Diagram of a CNC system, Physical components	
		of CNC (MCU, Monitor, Machine TOOL)	
		5.4 CNC tools: End mills, Face mill, Corner radius tool, Slot Mill / Slotting Saw, Hole-making tools.	
		5.5 3D cartesian coordinate system	
		3.3 3D cartesian coordinate system	
	<u> </u>		

	Unit VI	CNC Programm	ning Language		5	
		6.1 Define CNC				
		6.2 Sequence of Operations in a typical CNC program				
		6.3 Commonly used G-code, their meaning and syntax				
		6.4 Commonly u	used M-codes, their meani	ng and syntax		
		6.5 Commonly	used special charact	ters in CNC		
		programmin	programming			
Suggested 1	Learning	resources				
/D*41			A 47	D III I		
Title	17 1	1 1	Author	Publisher		
		al Automation	R. K. Rajput	S. Chand		
Robotics Er	ngineering		Klafter, Chmielewski, Negin	PHI		
Industrial R	obotics		Groover, Wises, Nagel,	Mcgraw Hill		
			Odrey			
Industrial R	obotics		B. Hodges	JAYCO		
Robotics: Ir	ntroduction	, Programming	Maxwell	Macmilla		
and Projects	S					
Robot Dyna	amics & Co	ontrol	Spong, Vidyasagar	Wiley		
CNC funda	mentals an	d programming	Agrawal, Patel	Charotar		
Fundamenta	als of CNC	Machining	Desk Copy	Autodesk		
Getting star	ted with C	NC	Edward Ford			
Computer N	Numerical (Control Machine	P Radhakrisnan	New Central Bo	ok Agenc	
Computer N	Numerical (Control	Stenerson & Curren	PHI		
CNC Progra	amming M	ade Easy	B K Jha	Vikas		
		· ·				
Course Ou	tcome		•	•		
At the end of		➤ Identify hard	lware of robot.			
course stude			grippers and sensors			
be able to:		_	C machine components			
			t commonly used CNC too	ols		
			ence of operations in a type		n.	
		_	t commonly used G-codes			

Semester	:	V
Course Code	•	EIEPE303/1
Course Title	:	Electronic Communication Principle
Number of Credits	•	2 (L:2, T:0, P:0)
Prerequisite	:	Basic Electronics
Course Category	:	PC

- Understand basic elements of a communication system.
- Analyse baseband signals in time and frequency domain.
- Understand various analog and digital modulation/demodulation techniques along with their performances in various transmission environments

Course Co	ntent		Hrs/ Unit
Module 1	Unit 1	Basics of Electronic Communication 1.1 Elements of basic electronic communication system	4
		1.2 Information source, Transmission medium, Noise,	
		Receiver, Destination	
		1.3 Necessity for modulation,	
	Unit II	Analog Modulation Techniques	5
		 2.1 Amplitude modulation (AM): Definition, Mathematical representation of AM wave, Modulation Index, percentage of modulation, Bandwidth and side bands, Representation of AM wave in time domain and frequency domain. 2.2 Frequency modulation (FM) – Mathematical representation of FM wave, Frequency deviation, Modulation Index, Representation of FM wave in time domain and frequency domain, Bandwidth requirement 	
Module 2	Unit III	Digital communication	5
		 3.1 Sampling theorem 3.2 PAM (Pulse Amplitude Modulation), PWM (Pulse Width Modulation) and PPM (Pulse Position Modulation), Time Division Multiplexing (TDM), Generation and detection of PAM, PWM, PPM 3.3 Pulse Code Modulation (PCM) 	
	Unit IV	Wave Propagation	5
		 4.1 Concept of Electromagnetic Wave and it's properties 4.2 Ground wave propagation – VLF propagation 4.3 Sky wave propagation – critical frequency, Skip distance 4.4 Space wave propagation - multipath space wave propagation, Radio horizon 	

Unit V	Radio Transmitters and Receivers	6
	5.1 AM transmitters-High level and low-level transmitters -	
	SSB transmitters - FM transmitters - Block diagram explanation. 5.2 AM receivers-operation - performance parameters - Communication Transceivers - Block diagram - SSB	
	receiver - FWI receivers - Block diagram explanation.	
Unit VI	Antenna	5
	 6.1 Antenna fundamentals: Resonant antenna and non-resonant antennas 6.2 Antenna parameters: Radiation pattern, polarization, bandwidth, beamwidth, antenna resistance, directivity and power gain, antenna gain 6.3 Dipole Antenna, loop antenna 	
	Unit VI	5.1 AM transmitters-High level and low-level transmitters - SSB transmitters - FM transmitters - Block diagram explanation. 5.2 AM receivers-operation - performance parameters - Communication Transceivers - Block diagram - SSB receiver - FM receivers - Block diagram explanation. Unit VI Antenna 6.1 Antenna fundamentals: Resonant antenna and non- resonant antennas 6.2 Antenna parameters: Radiation pattern, polarization, bandwidth, beamwidth, antenna resistance, directivity and power gain, antenna gain

Suggested Learning resources

Title	Author	Publisher
Analog and Digital communication	Sanjay Sharma	S. K. Kataria
Analog and Digital communication	B. P. Lathi	OXFORD
Communication System	Simon Heykin	Wiley
Electronic Communication Systems	Kennedy G,	Mc-Graw Hill
	Davis B,	
	Prasanna SRM	
Electronic Communication System	Kennedy Tata	Tata MCGraw - Hill
Principle of Electronic Communication System	Frenzel Louis E.	Mc-Graw Hill
Electronic Communication System:	Tomasi W.	Pearson Education India
Fundamentals Through Advanced		
	Constantine A.	Wiley-Student Edition
Antenna Theory: Analysis and Design	Balanis	India

Software/Learning Websites

https://www.st-andrews.ac.uk/~www_pa/Scots_Guide/iandm/part3/page1.html

https://www.antenna-theory.com/basics/main.php

https://www.explainthatstuff.com/antennas.html

http://www.circuitdiagram.org/am-radio-receiver-with-mk484.html

http://www.circuitstoday.com/single-chip-fm-radio-circuit

Course Outcome

At the end of the
course student will
be able to:

- 1. Discuss in detail about the various components of communication system like transmitter, modulator, channel and receiver
- 2. Design different modulation and demodulation techniques used in analog communication.
- 3. Identify and solve basic communication problems.
- 4. Analyse transmitter and receiver circuits.
- 5. Compare and contrast design issues, advantages, disadvantages and limitations of analog communication systems
- 6. Describe wave propagation and use of antenna

Semester	:	V
Course Code	:	EIEPE303/2
Course Title	:	Control Theory
Number of Credits	:	2(L:2, T:0, P:0)
Prerequisite	•	Basic idea on close loop system
Course Category	•	PC

- > To deduce transfer function of a system using block diagram reduction method and signal flow graph technique.
- > To draw frequency response curve of a system using Bode plot.
- > To assess relative stability of a system using Nyquist criterion.
- > To evaluate different frequency response specifications of different systems.
- > To get idea of state variable model of different system.
- > To get idea of non-linear behaviour of different systems.

Course Co	ntent		Hrs/Unit
Module 1	Unit 1	Mathematical Models of Physical Systems	6
		1.1 Concept of Transfer function.	
		1.2 Block diagram representation of armature control and	
		field control dc servomotor.	
		1.3 Derive transfer function using Block diagram reduction techniques.	
		1.4 Concept of signal flow graph, Mason's gain formula.	
		1.5 Derive transfer function using signal flow graph	
		technique.	
	Unit II	Time Domain Analysis	4
		2.1 Time response of under-damped second order system	
		using unit step input.	
		2.2 Time response specifications of second order systems:	
		Rise time, Delay time, Peak time, Peak overshoot,	
		Settling time, Steady state error	
Module 2	Unit III	Concept of Stability	6
		3.1 Asymptotic stability and conditional stability,	
		3.2 Routh – Hurwitz criterion,	
		3.3 Root Locus plots and their applications.	
	Unit IV	Frequency Domain Analysis	7
		4.1 Meaning of frequency response.	
		4.2 Bode plots (logarithmic plot) for representation of	
		frequency response.	
		4.3 Assessment of relative stability using Nyquist Plot and criterion.	

		4.4 Cain manain Dhasa		C	
		4.4 Gain margin, Phase		over frequency	
		and Phase cross ove	er frequency.		
Module 3	Unit V	State Variable Analysi	is		4
		5.1 Concept of State, St		e Model.	
		5.2 State models for line			
				J	
	Unit VI	Nonlinear Systems			3
		6.1 Behaviour of nonlin	ear systems.		
		6.2 Common physical n	onlinearities.		
Cummented	Lagunina				
Suggested	Learning	resources		<u> </u>	
	т	itle	Author	Publis	hon
Process Co.		ple & Application	S Bhanot	Oxford Unive	
			S Dilaliot	Oxioid Ollive	181ty F1688
Process Control; Concept Dynamics & Application			S. K. Singh	PHI	
		Control	D.Patranabis	Mc Graw Hill	
Principles of Process Control Instrument Engineers' Handbook: Process			Bela G Liptak	CRC Press, Taylor &	
Control & Optimization, Vol-II				Fraancis Group	
Chemical Process Control: An Introduction to			G. 1 1	•	
Theory & Practice			Stephanopoulos	Pearso	on
Instrumentation Fundamental for Process			D.O.J.Desa	Taylor & Francis	
Control			D.O.J.Desa	Taylor & I	Tancis
Modern Control Engineering			K.Ogata	PHI	
Principles of Industrial Process Control			D.P.Eckman	J. Wiley & Sons	
Automatic			D.P.Eckman	J. Wiley & Sons	
		mentation Technology	Curtis Johnson	PHI	
Automatic	Control Sy	stem	Kuo	Wiley I	
Process Svs	stem Analy	sis & Control	Coughanowr	Mc Graw Hill	
-				International	
Course Ou		1 7	11 1 1	•	<u> </u>
At the end			y block diagram r		
course stud	ent will		controllers based on		
be able to:		2. Solve the steady s standard inputs	state and transient	anarysis of a s	system fo
		_	f linear systems usin	o the Routh arr	av teet and
		1	control design const	•	ay icst all
		4. Use root locus techn	<u> </u>		ld systems
			hase margins from E	•	-
			d their implications i	_	• •
		1	r		· · · · · · · · · · · · · · · · · · ·

Semester	:	V
Course Code	:	SI301
Course Title	:	Internship II
Number of Credits	:	1 (L:0, T:0, P:0)
Prerequisite	:	
Course Category	:	Internship

- ➤ Will expose technical students to the industrial environment, which cannot be simulated in the classroom and hence creating competent professionals for the industry.
- ➤ Provide possible opportunities to learn, understand and sharpen the real time technical / managerial skills required at the job.
- Exposure to the current technological developments relevant to the subject area of training.
- Learn to apply the technical knowledge in real industrial situations.
- ➤ Gain experience in writing technical reports/projects.
- Expose students to the engineer's responsibilities and ethics.
- > Promote academic, professional and/or personal development.
- ➤ Understand the social, economic and administrative considerations that influence the working environment of industrial organizations
- > Understand the psychology of the workers and their habits, attitudes and approach to problem solving

Few points		
Area of internship	After 4th semester, for Internship II, students are required to be involved in Inter / Intra Institutional activities viz Training and/or simulation programme with different Institutes like workshop of ITI / Other Polytechnics / other technical Institutes; Soft skill training / industrial training / online training organized by Training and Placement Cell of the institutions / any other organization / Industry; contribution at incubation / innovation / entrepreneurship cell of the institute; participation in workshops / competitions etc; Learning at Departmental lab/ Institutional workshops; undergo internship with industry / NGO's / Government organizations / Micro / Small / Medium enterprises to make themselves ready for the industry.	
Activity(s) may include -	 ✓ Training / Skill Development from any institute / organization [private/govt/govt aided] or from any individual expert on topics related to Instrumentation / Electronics engineering field. ✓ Soft skill training organized by Training and Placement Cell of the respective institutions or any other private / govt organization. 	

Working for consultancy job / project work within the institutes or outside the institute. ✓ Visit any industry. ✓ Activities may be arranged by the West Bengal State Council of Technical and Vocational Education & Skill Development. ✓ Board of Practical Studies, MSME or Department of Small-Scale Industries or other engineering department of State Government may be involved. ✓ Initiative from the Department of Technical Education, Training and Skill Development is highly solicited. ✓ Activities centering Private organization in the arena of Instrumentation engineering / Electronics engineering / Electrical engineering etc. may also be considered. ✓ It may be arranged in-campus or off-campus; online or offline mode or blended mode. ✓ Activities may be conducted continuously for stipulated period of time or may be arranged in a staggered fashion – in the latter case Saturday and Sunday may be utilized for the Internship Program and accordingly class schedule will have to be arranged. ✓ Training on Electrical auto CAD / PLC / Drive / SCADA in Inter/ Intra Institution may be organized. After completion of Internship, the student should prepare a comprehensive report to indicate what he / she has observed and learnt in training / course period. The student may contact Industrial Supervisor / Faculty Mentor to prepare the final report on the assigned topics. The training report should be signed by the Industrial Superviso r/ Internship Faculty Mentor, and / or HOD. The Internship Report will be evaluated on the basis of following criteria (as Note applicable). ✓ Originality ✓ Adequacy and purposeful writeup ✓ Organization, format, drawing, sketches, language ✓ Practical applications and relationship with basic theory ✓ Concepts taught in the course outcomes ✓ Attendance record, daily diary, quality of the internship report Seminars must be arranged for the students based on his / her training report, before an internal committee constituted by the concerned department of the Evaluation of institute. The evaluation will be based on the following criteria: Internship Report ✓ Awareness about the significance of training ✓ Observations and recording data ✓ Concept learned in training

	 ✓ Quality of content presented ✓ Proper planning for presentation ✓ Depth of knowledge and skills ✓ Submission of report in time ✓ Attendance record, daily diary, quality of internship report.
Assessment	Evaluation may be done purely by the Internal committee constituted by the concerned department of the institute and / or through external expert.
Course Outco	me
At the end of	1. Develop new skills and supplement knowledge.
the course	2. Improve communication and teamwork skills.
student will	3. Learn strategies like time management, multi-tasking etc. in an industrial
be able to:	setup.
	4. Handle different Industrial / Institutional equipment / machineries
	5. Meet new people and learn networking skill

Semester	:	V
Course Code	:	PR301
Course Title	:	Minor Project
Number of	:	2 (L:0, T:0, P:4)
Credits		
Prerequisite	:	Basic on Electronics & Instrumentation
Course	:	PC
Category		
Course Objec	tive	
Following are	the o	bjectives of this course
	>	To understand the problem and solution of real-life problem
	>	To achieve the potentiality of doing team work
	>	To fill up the gap between academic knowledge and actual real-life
		problem-solving knowledge.
	>	To prepare the project repot in a skill full way.
	>	To develop technical skill, presentation skill and enhance creative
		thinking.
		To work in Groups, Plan the work and coordinate the work.
	>	To develop leadership qualities and Innovative ideas.

Project group	The project shall be undertaken by a group of students as per convenience. Individual student can also perform separate project.
Few suggestiv	e project domain
Tew suggestives	Simple electrical and electronic project Project for process automation (level, Flow, temperature, pressure control) Microcontroller based project Arduino based project Raspberry Pi based project IOT project DTMF cell phone-based project RF and RFID based project Android application-based project Android application-based project Matlab based project LabView based project PC based project Robotic project Fuzzy logic based project Sensor based project Wireless sensor based project Bluetooth and Zigbee based Projects GSM based project GPS based project Foject on Irrigation system Robotic project TV remote-control based project Fuch based Project Fingerprint based project Fraffic density control project Project on solar system Object detection project Uvhicle detection project Human health monitoring project Vehicle speed control project Vehicle speed control project Project with night vision camera Project work on women safety Agricultural robotic project Project based on Wireless surveillance Project based on Wireless surveillance
	1 Toject for Dillia hospitality
	N. Daviertanie manche adeutalieri (1977)
Note	 Project topic may be selected having consultation with project guide. Every student will have to maintain record of individual contribution on project work.

	 ➢ After completion of the project, each student should prepare project report. ➢ The project report should be signed by the guide and / or HOD. ➢ The student will have to submit reports on their assigned projects to the project guide in time. ➢ Student will have to perform a seminar presentation on their assigned project work in front of a Board of Internal Examiners of concern department at the time of end semester internal assessment. ➢ Seminar evaluation should be done on the basis of following points ✓ Quality of content presented ✓ Proper Planning for presentation ✓ Clarity of presentation ✓ Depth of knowledge and skills ✓ Questionnaire
Format of Project Report	 Title page Acknowledgement Certificate from guide Abstract Objective Literature review/ background survey/history Present work Methodology Observation Conclusion References
Evaluation of Project Report	The project Report will be evaluated on the basis of following criteria Originality Awareness about the significance of project topic Setting and operation of experimental set up Observations and recording data Interpretation of result and conclusion Organizations, format, drawing, sketches, style, language Submission of report in time Answer to sample questions
Assessment	 Internal Assessment: Total marks: 60 ➤ Continuous assessment of performance, contribution and in time submission of reports on projects: 30 Marks ➤ Seminar Presentation and Viva Voce at end of semester: 20 Marks ➤ Class Attendance:10 Marks External Assessment: Total marks: 40 (End Semester Examination) ➤ Performance on exhibition of project work: 20 marks ➤ Evaluation on Project Reports: 10 marks

	➤ Viva voce on project work: 10 marks
Course Outco	me
At the end of	1. Identify and analyse the problem statement.
the course	2. Develop and design alternative solutions for the identified problem.
student will	3. Adopt new skills and supplement knowledge
be able to:	4. Build communication and teamwork skills.
	5. Improve time management, multi-tasking, real time technical knowledge
	etc.
	6. Apply their knowledge for doing some application-oriented work.

Overall Examination Scheme:

- (1) Theory courses:
- (a) Internal Assessment: 40 marks

Class test:
Quizzes / Assignment / Student activity:
Class Attendance:
10

- (b) End semester Examination: 60 marks
- (2) Sessional / Practical courses:
- (a) Internal Assessment: Continuous Internal Assessment throughout the Semester: 60 marks

✓ Continuous evaluation: 50 Marks;✓ Class Attendance: 10 Marks

- (b) External Assessment (end Semester examination): 40 marks
 - ✓ Assignment on the day of exam + practical report copy submission: 20
 - ✓ Viva-voce: 20

<u>Pass Criterion</u>: Students have to obtain at least 40% marks (pass marks) in both internal assessment and end semester examination separately.