Model Question Paper Mathematics (MTH2) Class – XII Semester- IV

Full Marks: 40

 $GROUP - A(5 \times 2 = 10)$

(This group consists of 5 questions with 2 marks each)

- 1. Find the projection of \vec{a} on \vec{b} if \vec{a} . $\vec{b} = 8$ and $\vec{b} = 2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}$.
- 2. Integrate : $\int \frac{dx}{(x^2 x)}$

3. Evaluate :
$$\int_0^{\frac{\pi}{2}} \sqrt{1 - \cos 2x} \, dx$$

- 4. Find the area of the region bounded by the curve $y^2 = 4x$, y axis and the line y y = -3.
- 5. Find the order and degree of the differential equation:

$$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^4 + \sqrt[3]{y} = 0$$

GROUP – B ($5 \times 3 = 15$) (This group consists of 5 questions with 3 marks each)

6. If $|\vec{a} \times \vec{b}|^2 + |\vec{a}.\vec{b}|^2 = 400$ and $|\vec{a}| = 5$; find $|\vec{b}|$ OR

Using vector method; find the area of the triangle with vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1).

7. Integrate :
$$\int \frac{dx}{\sin^4 x + \cos^4 x}$$

OR

Evaluate : $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$

8. Using integrals find the area enclosed between the parabola $x^2 + 8y = 0$ and its latus rectum.

OR

Using integrals find the area of the region bounded by y = |x - 1| and y = 1

9. Solve the equation :
$$\frac{dy}{dx} - y = e^x$$
, given $y(0) = 1$

OR

Solve the equation
$$\left(xe^{\frac{y}{x}} + y\right) dx = x dy$$
, given $y(1) = 1$

10. Using integrals, find the area enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

OR

Using integrals, find the area of the figure |x| + |y| = 1.

GROUP – C $(3 \times 5 = 15)$ (This group consists of 3 questions with 5 marks each)

11. Evaluate : $\int \frac{\sin(x-2a)}{\sin(x+2a)} dx$

OR

Integrate : $\int_0^{\pi} x \cos^2 x \, dx$

- 12. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ where $a = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$
- 13. Find the equation of the curve passing through the point (1,1) whose differential equation is $x \, dy = (2x^2 + 1)dx$.

OR

Find the equation of a curve passing through $(1, \frac{\pi}{4})$, if the slope of the tangent to the curve at any point P(x, y) is $\frac{y}{x} - \cos^2(\frac{y}{x})$