Model Paper for H S (Vocational)

Mathematics (MTH1)

Class – XI

Full Marks: 40

Time: 2 hours

Answer the following Questions

$$\mathsf{Group}-\mathsf{A}\ (5\times 2=10)$$

(This group comprises 5 questions with 2 marks each)

1. If the sum up to n terms of an AP is given by $S_n = -3n^2 + 5n$, find its 10^{th} term.

Find the sum of the series: $\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} \dots \infty$

- 2. Find the term independent of x in the expansion of $\left(2x \frac{5}{x}\right)^{20}$.
- 3. Find the value of k for which the points (-3, 1), (2, k 1), (-1, -2) are collinear.

4. Evaluate:
$$\log_{\chi \to 0} \left\{ \frac{\log_e(1-4x)}{\sin(\frac{3x}{2})} \right\}$$

Evaluate:
$$\lim_{x \to 7} \left\{ \frac{\frac{9}{x^2 - 7^2}}{\log_e(x-6)} \right\}$$

5. If
$$f(x) = \sqrt[4]{x^{-7}} - \log_3 x$$
, $x > 0$, find $f'(1)$
OR
If $f(x) = |3 - 4x|$, then find (i) $f'(-3)$ (ii) $f'(\pi)$

Group – B
$$(5 \times 3 = 15)$$

(This group comprises 5 questions with 3 marks each)

6. Show that the middle term in $\left(x + \frac{1}{2x}\right)^n$ is $\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!}$ OR

Find the 7th term from the end in $\left(2x - \frac{5}{x^2}\right)^{17}$

7. Find the equation to the circle described on the common chord of the given circles $x^2 + y^2 - 4x - 5 = 0$ and $x^2 + y^2 + 8x + 7 = 0$ as diameter. OR

The equation of in-circle of an equilateral triangle is $x^2 + y^2 + 4x - 6y - 3 = 0$. Find the area of the triangle.

8. Find the equation of the parabola whose vertex is (-1, 3) and focus is (3, -1).

9. Evaluate:
$$\lim_{x \to 1} \left(\frac{\sqrt[3]{x} + \sqrt[4]{x} + \sqrt{x} - 3}{x^3 - 1} \right)$$

10. If $y = \sqrt{\frac{x}{m}} + \sqrt{\frac{m}{x}}$, prove that $2xy\frac{dy}{dx} = \frac{x}{m} - \frac{m}{x}$, where *m* is a constant. OR

If
$$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!}$$
, prove that $\frac{dy}{dx} + \frac{x^n}{n!} - y = 0$

Group – C
$$(3 \times 5 = 15)$$

(This group comprises 3 questions with 5 marks each)

11. Find the middle term and the sum of all terms of the series:

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \dots + \left(-\frac{5}{6}\right).$$

12. Find the equation of the straight line passing through the point of intersection of the straight lines 2x + 3y + 4 = 0 and 3x + y - 1 = 0 and inclined to the positive direction of the x-axis at an angle 135° .

OR

Find the equation to the perpendicular bisector of the line segment joining the two points (2, 3) and (4, -1). What is the length of the perpendicular drawn from the origin to that perpendicular bisector?

13. Find the (i) centre (ii) length of latus rectum (iii) foci of the ellipse $3x^2 + 4y^2 + 6x - 8y - 5 = 0$ **OR**

Find the equation of the hyperbola having transverse and conjugate axes parallel to X and Y - axes respectively with centre (3,-2), eccentricity $\frac{\sqrt{5}}{2}$ and length of latus rectum 2. Also find its foci and extremities of any latus rectum.