SUBJECT:CHEMISTRY (CHEM) CLASS XII SEMESTER III <u>THEORY</u> <u>FULL MARKS – 30</u>

(MCQ Type Question)

UNIT	Торіс	No of periods assigned	Marks
1	Haloalkanes and Haloarenes, Alcohols, phenols and ethers	18	10
2	Solid State & Solutions	11	5
3	Electrochemistry	10	5
4	s and p block elements	10	5
5	Chemical Kinetics & Surface Chemistry	11	5
		60	30

DETAIL SYLLABUS

UNIT	Topic / Sub Topic	No of periods assigned
1	 Preparation from alcohols by reaction with PX₃ (X = Cl, Br), Iodine and red phosphorous thionyl chloride. Haloform reaction – preparation of chloroform and iodoform [preparative methods not required] Physical properties Chemical properties – hydrolysis and dehydrohalogenation Reaction of methyl iodide with Mg – Grignard reagent; Uses of chloroform and iodoform; Freons: examples, uses and environmental hazards. DDT and its environmental hazards Preparation of chlorobenzene; Substitution reaction (directive influence of chlorine) Primary, secondary and tertiary alcohols (examples); Method of preparation (primary alcohol only): Hydrolysis of alkyl halides, Hydrolysis of esters Preparation of methanol from water gas and synthesis gas. 	18

	Preparation of ethanol by fermentation and	
	hydration of ethene; Preparation of rectified spirit,	
	absolute alcohol, spectroscopic alcohol, "super dry"	
	alcohol. Identification of methanol and ethanol	
	Physical properties; reaction with Na, PCl ₅ , SOCl ₂ ,	
	esterification reaction, uses of methanol and	
	ethanol.	
	• Preparation (phenol) from aniline (laboratory	
	process) by cumene process (industrial process);	
	Acidic nature of phenol. Acetylation, Benzoylation;	
	reaction with Br_2 – water, Reimer – Tieman reaction.	
	Kolbe-Schmitt reaction. Phenol – formaldehyde	
	resin. Identification and uses of phenol.	
	 Preparation of diethyl ether from ethanol (no 	
	experimental details); Williamson Synthesis.	
	Preparation of anisole from phenol; Physical	
	properties: inflammability of diethyl ether	
	(precaution to be taken); Reaction with HI, Reaction	
	of diethyl ether with aerial oxygen in the presence of	
	light; Uses of diethyl ether	
	Classification of solids based on differences in	
	binding forces: ionic, molecular, covalent, metallic	
	solids (definition with example); Crystalline and	
	amorphous solids (elementary idea with examples);	
	Two dimensional and three-dimensional lattice; unit	
	cell – cubic [Primitive, body centered and face	
	centered); Number of atoms per unit cell in a cubic	
2	cell; Schottky defect and Frenkel defect.	11
	• Solution of solids in liquids, solubility of gases in	
	liquids, solid solutions; Colligative properties:	
	relative lowering of vapour pressure – Raoult's Law;	
	Elevation of Boiling Point; Depression of Freezing	
	Point; Osmotic Pressure. Reverse Osmosis	
	(qualitative idea); Determination of molar masses	
	using colligative properties	
	Concept of oxidation-reduction; oxidation number;	
3	balancing redox reaction by oxidation number	10
_	method and ion electron method;	
	• Specific and molar conductivity (definition with	

	example); Electrolysis – Laws of Electrolysis;	
	Electrolytic Cell, Galvanic Cell (Voltaic Cell) Half –	
	cell reaction, cell reaction, emf of a cell, standard	
	electrode potential Dry cell (dry cell battery);	
	Primary dry cell battery Common dry cell battery,	
	Alkaline battery, Mercury battery, Lithium battery,	
	Secondary dry cell battery, Lead storage battery	
	(lead accumulator), Fuel cell	
	• Elements of groups 1 & 2; Electronic configuration	
	Trends in variation in ionization enthalpy, atomic	
	and ionic radii. Trends in chemical reactivity with	
	oxygen and halogens	
	• Uses of some important compounds of boron and	
	aluminium: boric acid, boron trifluoride, diborane,	
	alumina, alums, anhydrous aluminium chloride	
	• Carbon: catenation property; allotropic forms –	
	physical properties and uses. Uses of silicon and	
	carborundum.	
	• allotropy of phosphorous; Nitrous acid & nitric acid;	
4	phosphine, phosphorous pentoxide, phosphorous	10
	pentachloride, phosphorous acid and phosphoric	
	acid (preparation and uses only)	
	• Allotropy in sulfur; Hydrogen Sulfide – use in	
	analysis of basic radicals; Sulfur dioxide and sulfur	
	trioxide [preparation and uses] Sulfur dioxide shows	
	both oxidizing and reducing properties –	
	explanation with examples	
	• Preparation of halogens (only preparative reaction)	
	and comparative reactions of halogens: oxidizing	
	property, reaction with water and alkali; detection	
	of halides. Bleaching powder – preparation and uses	
	Factors influencing rate of a reaction: concentration,	
	temperature, catalyst. Order and molecularity of a	
	reaction. Rate law of first order, second order and	
_	zero order reaction. Definition of half-life of a	14
5	reaction. Concept of activation energy of a reaction	11
	 Adsorption: Physisorption and chemisorption; 	
	factors affecting adsorption of gases on	
	solid;Catalysis: homogeneous and heterogeneous;	
L		

Colloidal State: Distinction between true solutions,
colloids and suspensions; lyophobic and lyophilic
colloids. Properties of Colloids: Tyndal effect,
Brownian Movement, electrophoresis, coagulation.

CHEMISTRY (CHEM)

CLASS XII

SEMESTER IV

<u>THEORY</u>

FULL MARKS - 40

(SAQ AND LAQ Type Question)

UNIT	Торіс	No of periods assigned	Marks
1	Metallurgy	14	6
2	Aldehyde, ketones, carboxylic acid and derivatives	20	11
3	Organic Compounds containing Nitrogen	17	8
4	Coordination Chemistry & d-block elements	17	8
5	Biomolecules, Polymers, Pharmaceuticals, Detergents.	16	7
		84	40

DETAIL SYLLABUS

UNIT	Topic / Sub Topic	No of periods assigned
1	 General principles and methods of extraction Ores and minerals Concentration: Froth floatation; Calcination, roasting, Flux and slag, Electrolytic reduction, carbon reduction, Self reduction; Occurrence and principles of extraction of aluminium, copper and iron (no technical details); Distinction and uses of cast iron, wrought iron and steel. Alloys: Purpose of making alloys Composition and uses of Bronze, Brass, Bell Metal, Duralumin, Stainless Steel. 	14
2	 Preparation from: Alcohols Carboxylic acid Acid chlorides (Rosenmund reduction – aldehydes) Gatterman – Koch and Gatterman aldehyde Synthesis (benzaldehyde) Friedel – craft acylation reaction (acetophenone); Physical properties; Chemical properties: Oxidation reaction (including reaction of aldehydes with Fehling's and Tollens' Reagents); Reduction reactions– Reduction with H₂ 	20

3	 Amines: Introduction Classification – primary, secondary and tertiary amines (examples with structures) Preparation of primary amines by reduction of nitro compounds. Gabriel's phthalimide synthesis. Hofmann degradation reaction Aniline: Preparation from nitrobenzene Physical properties Chemical properties Basic nature Isocyanide (carbylamine) reaction Diazo reaction. Benzenediazonium Salts: Preparation Reactions involving replacement of diazo group by H, OH, Halogen, CN, NO₂; Coupling reaction, Reduction Cyanides and Isocyanides: preparation Nitro Compounds: Preparation of Nitrobenzene and 1,3-di-nitrobenzene; Reduction of nitrobenzene 	17
	 / Catalyst Na - Hg, H₂O; lithium aluminium hydride (LAH), sodium borohydride; Clemmensen reduction; Addition reaction: with HCN and NaHSO₃; Hemiacetal and acetal formation; Reaction with hydroxylamine, hydrazine, phenylhydrazine, 2,4- dinitrophenylhydrazine (Brady's Reagent), Semi- carbazide, Aldol reaction, Cannizzaro and crossed Cannizzaro reaction, Benzoin condensation, Perkin reaction; Distinction between aldehydes and ketones; Identification of acetaldehyde and acetone formation - uses. Aliphatic carboxylic acids and aromatic carboxylic acid (benzoic acid): Preparation by oxidation of alcohols and aldehydes, oxidation of toluene (benzoic acid); By hydrolysis of alkyl and aryl cyanides; By using Grignard reagent; By the hydrolysis of esters; Physical properties; Acidic properties - reaction with alkali and NaHCO₃. Reaction with PCl₃, PCl₅ and SOCl₂; Esterification reaction;Hunsdiecker reaction; Hell - Volhard - Zelinsky reaction; Identification of formic acid and acetic acid. Uses of Acetic Acid Derivatives of Carboxylic Acids: Acetyl chloride, acetic anhydride, Acetamide ethyl acetate - preparation and uses 	

	under different conditions.	
4	 Coordination Chemistry: Examples ligands, coordination number, shapes; Bonding: Werner's Theory and Simple Isomerism; A few important coordination complex (formula, structure, colour):Brown ring compound, sodium nitroprusside, tetraammine copper(II) sulphate. Few examples of coordination compounds, important in biological system: haemoglobin, chlorophyll, Vitamin B₁₂ (nature and function). d-block elements: electronic configuration, occurrence and characteristic of transition metals, general trends in properties of the first-row transition metals – ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic property, alloy formation. Preparation and properties of K₂Cr₂O₇ and KMnO₄ 	17
5	 Carbohydrates: Introduction Classification (aldose and ketose); Monosaccharides- Glucose and fructose structure (no elucidation) with D/L nomenclature, Oxidation, and reduction reactions;Osazone formation; Identification Oligosaccharides:Sucrose structure (no elucidation); Non reducing sugar; hydrolysis; Identification; Polysaccharides: Starch, Monomer units, Hydrolysis, Identification Proteins: Elementary idea of amino acids (examples: glycine, alanine, cysteine, serine, methionine, aspartic acid); zwitterionic structure, isoelectric point. Peptide bond, poly-peptides Primary structure of proteins Identification. Nucleic Acid: DNA & RNA Nucleotides and nucleosides. Natural and synthetic polymers Homopolymer and copolymer Polymerization reaction; Thermoplastics (definition with examples) Preparation (no technical details) and uses of polyethylene, Teflon, Bakelite, Nylon, Terylene (synthetic fibres) Hazards of using plastic materials Biodegradable polymers 	16

٠	Analgesics,	antipyretics,	tranquilizers,
	antimicrobials,	antifungals, antifert	tility drugs, anti-
	viral drugs, an	tacids, antihistamin	es, antimalarials,
	antiseptics, dis	infectants (examples	only)Side effects
	of aspirin and p	oaracetamol	
•	Soaps and dete	ergents – their chem	ical composition
	and cleansing a	ction	

Practical marks: 30

Periods: 72

Practical :

Chemistry Practical Lab

List of Experiments:

Experiment 1

1.1 To prepare starch sol (hydrophilic sol)

1.2 To prepare hydrated ferric oxide sol (hydrophobic sol)

Experiment 2

- 2.1 To prepare potash alum
- 2.2 To prepare ferrous ammonium sulfate (Mohr's Salt)
- 2.3 To prepare acetanilide
- 2.4 To prepare 2-phenylazo-2-naphthol dye (2-naphtholaniline dye)

Experiment 3

To identify one of the following functional groups present in a solid organic sample:

Aromatic primary amino (azodye test)

Phenolic-OH (Fecl, test)

Carboxylic acid group (NaHCo, test)

Addehydie and Ketonic groups (Brady's Reagent and Tollen's Reagent test)

Experiment 4

- 4.1 To prepare methyl orange indicator solution
- 4.2 To prepare BDS indicator solution

- 4.3 To prepare Fehling's Solution A and Fehling's Solution B
- 4.4 To prepare 0.1 M Mohr's Salt Solution in $0.5 1 \text{ M H}_{2}\text{SO}_{4}$

Experiment 5

To identify carbohydrates, fats and proteins given as pure samples.

Experiment 6

General acquaintance with chemical balance - sartorius / bunge / electronic (preferably electronic)

- 6.1 To prepare ~ 0.1 N standard sodium carbonate solution
- 6.2 To determine the strength of unknown ~ 0.1N HCL/ H_2SO_4 (in normality, molarity and g/l) by titration with the standard ~ 0.1 N Na₂Co₃ solution.
- 6.3 To prepare standard 0.1 N oxalic acid solution
- 6.4 To determine the strength of unknown 0.1N NaoH solution (in normality, morality and g/l) by titration with the standard \sim 0.1N oxalic acid solution.
- 6.5 To determine the strength of unknown ~ 0.1 N KMnO₄ solution (in normality, molaity and g/l) by titration with the standard ~ 0.1 N oxalic acid solution.
- 6.6 To determine the amount of iron in g/l present in the unknown ~ 0.1N Mohr's Salt Solution by titration with the standardised $0.1N \text{ KMnO}_4$ solution.
- 6.7 To prepare standard ~ 0.1 N K₂Cr₂O₇ solution.
- 6.8 To determine the amount of iron in g/l in the unknown ~ 0.1N Mohr's Salt Solution by the standard ~ $0.1N \text{ K}_2\text{Cr}_2\text{O}_2$ solution.